Example for AutoModelForCausalLM (#11)

- Example for AutoModelForCausalLM (7e03f75b800b1978e2f57e01ee8e99d30c41e47e)


Co-authored-by: Pedro Cuenca <pcuenq@users.noreply.huggingface.co>
This commit is contained in:
Philipp Schmid 2024-04-19 06:56:50 +00:00 committed by system
parent 2b72492696
commit d3aa29f914
No known key found for this signature in database
GPG Key ID: 6A528E38E0733467

@ -273,7 +273,9 @@ This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with
### Use with transformers
See the snippet below for usage with Transformers:
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
#### Transformers pipeline
```python
import transformers
@ -315,6 +317,50 @@ outputs = pipeline(
print(outputs[0]["generated_text"][len(prompt):])
```
#### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
### Use with `llama3`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3)