Compare commits

...

No commits in common. "main" and "refs/deployment/triton" have entirely different histories.

12 changed files with 386 additions and 93617 deletions

35
.gitattributes vendored

@ -1,35 +0,0 @@
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.mlmodel filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.npy filter=lfs diff=lfs merge=lfs -text
*.npz filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pickle filter=lfs diff=lfs merge=lfs -text
*.pkl filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text

255
1/model.py Normal file

@ -0,0 +1,255 @@
"""
[Transformer-LLM 백엔드 가이드]
파일은 NVIDIA Triton Server에서 Hugging Face `AutoModelForCausalLM` 기반 모델을 손쉽게 배포하기 위해 제공되는 커스텀 Python 백엔드 템플릿입니다.
1. 모델 호환성
- Hugging Face의 `AutoModelForCausalLM` 클래스와 호환되는 모든 Causal Language Model을 지원합니다.
- [확인] 배포할 모델 `config.json` `architectures` 항목이 `...ForCausalLM` 형식인지 확인.
- [확인] 모델이 Hugging Face 공식 문서의 AutoModelForCausalLM이 지원하는 모델인지 확인.
(https://huggingface.co/docs/transformers/en/model_doc/auto#transformers.AutoModelForCausalLM.from_pretrained)
2. 토크나이저 호환성
- `AutoTokenizer` 호환되는 토크나이저를 지원하며, 모델과 동일한 경로에서 자동으로 로드됩니다.
3. 커스터마이징 안내
- 템플릿은 범용적인 사용을 위해 작성되었습니다.
- 특정 모델의 동작 방식이나 예외 처리가 필요한 경우, 파일(`model.py`) 설정 파일(`config.pbtxt`) 직접 수정하여 사용하시기 바랍니다.
"""
import json
import torch
import numpy as np
import triton_python_backend_utils as pb_utils
import uuid
from typing import List, Dict, Any, Union, Tuple
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
BitsAndBytesConfig,
)
from peft import PeftModel, PeftConfig
class TritonPythonModel:
def initialize(self, args: Dict[str, str]):
"""
모델 초기화: 설정 로드, 로거 설정, 모델 토크나이저 로드
"""
self.logger = pb_utils.Logger
self.model_config = json.loads(args["model_config"])
self.model_name = args["model_name"]
# 설정 파라미터 로드
self.base_model_path = self._get_config_param("base_model_path")
self.is_adapter_model = self._get_config_param("is_adapter_model", "false").lower() == "true"
self.adapter_model_path = self._get_config_param("adapter_model_path")
self.quantization = self._get_config_param("quantization")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# 설정 로그 출력
self.logger.log_info(f"================ {self.model_name} Setup ================")
self.logger.log_info(f"Base Model: {self.base_model_path}")
self.logger.log_info(f"Adapter Mode: {self.is_adapter_model} ({self.adapter_model_path})")
self.logger.log_info(f"Quantization: {self.quantization}")
self.logger.log_info(f"Device: {self.device}")
self._load_model_and_tokenizer()
self.logger.log_info(f"Model initialized successfully.")
def _load_model_and_tokenizer(self):
"""모델과 토크나이저를 로드하고 설정합니다."""
# 1. Quantization 설정
bnb_config = self._get_bnb_config()
# 2. Base Model 로드
load_path = self.base_model_path
if self.is_adapter_model:
peft_config = PeftConfig.from_pretrained(self.adapter_model_path)
load_path = peft_config.base_model_name_or_path
try:
self.model = AutoModelForCausalLM.from_pretrained(
load_path,
torch_dtype="auto",
quantization_config=bnb_config,
device_map="auto",
local_files_only=True,
trust_remote_code=True
)
except Exception as e:
self.logger.log_error(f"Failed to load base model: {e}")
raise e
# 3. Adapter 병합 (필요 시)
if self.is_adapter_model:
self.model = PeftModel.from_pretrained(self.model, self.adapter_model_path)
self.model.eval()
# 4. Tokenizer 로드
self.tokenizer = AutoTokenizer.from_pretrained(load_path, trust_remote_code=True)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.logger.log_info("Pad token was None. Set to EOS token.")
self.supports_chat_template = (
hasattr(self.tokenizer, "chat_template") and
self.tokenizer.chat_template is not None
)
self.logger.log_info(f"Supports Chat Template: {self.supports_chat_template}")
if self.supports_chat_template:
self.logger.log_info(f"Chat Template Content:\n{self.tokenizer.chat_template}")
def _get_bnb_config(self) -> Union[BitsAndBytesConfig, None]:
if self.quantization == "int4":
return BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
elif self.quantization == "int8":
return BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=True
)
return None
def execute(self, requests):
"""Triton Inference Request 처리 메인 루프"""
responses = []
for request in requests:
# [ID 생성 로직] - 로그 추적용으로 유지 (Response에는 포함 X)
request_id = request.request_id()
if not request_id:
request_id = str(uuid.uuid4())
try:
# 1. 입력 데이터 파싱
input_data, is_chat = self._parse_input(request)
# [LOGGING] Request ID 포함하여 로그 출력
log_input_str = json.dumps(input_data, ensure_ascii=False) if isinstance(input_data, (list, dict)) else str(input_data)
self.logger.log_info(f"\n[RID: {request_id}] >>> [{'CHAT' if is_chat else 'TEXT'}][Input]: {log_input_str}")
# 2. Generation Config 생성
gen_config = self._create_generation_config(request)
# 3. 토크나이징
inputs = self._tokenize(input_data, is_chat)
# 4. 모델 추론 (Generate)
output_text = self._generate(inputs, gen_config)
# [LOGGING] Request ID 포함하여 결과 출력
self.logger.log_info(f"\n[RID: {request_id}] <<< [Output]: {output_text}")
# 5. 응답 생성
responses.append(self._create_response(output_text, request_id))
except Exception as e:
self.logger.log_error(f"[RID: {request_id}] Error during execution: {e}")
err_tensor = pb_utils.Tensor("text_output", np.array([str(e).encode('utf-8')], dtype=np.bytes_))
responses.append(pb_utils.InferenceResponse(output_tensors=[err_tensor]))
return responses
def _parse_input(self, request) -> Tuple[Union[str, List[Dict]], bool]:
input_text = self._get_input_scalar(request, "text_input")
try:
conversation = json.loads(input_text)
if isinstance(conversation, list):
return conversation, True
except (json.JSONDecodeError, TypeError):
pass
return input_text, False
def _tokenize(self, input_data, is_chat: bool):
if self.supports_chat_template and is_chat:
return self.tokenizer.apply_chat_template(
input_data,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True
).to(self.device)
else:
if is_chat:
input_data = str(input_data)
return self.tokenizer(input_data, return_tensors="pt").to(self.device)
def _generate(self, inputs, gen_config: GenerationConfig) -> str:
input_ids = inputs["input_ids"]
input_len = input_ids.shape[-1]
with torch.no_grad():
outputs = self.model.generate(
**inputs,
generation_config=gen_config,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
generated_tokens = outputs[0][input_len:]
decoded_output = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
return decoded_output.strip()
def _create_generation_config(self, request) -> GenerationConfig:
def get_param(name, default=None, cast_type=None):
val = self._get_input_scalar(request, name, default)
if val is not None and cast_type:
return cast_type(val)
return val
return GenerationConfig(
max_length=get_param("max_length", 1024, int),
max_new_tokens=get_param("max_new_tokens", 256, int),
temperature=get_param("temperature", 1.0, float),
do_sample=get_param("do_sample", False, bool),
top_k=get_param("top_k", 50, int),
top_p=get_param("top_p", 1.0, float),
repetition_penalty=get_param("repetition_penalty", 1.0, float),
)
def _create_response(self, output_text: str, request_id: str):
"""생성된 텍스트를 Triton Response 객체로 변환"""
output_tensor = pb_utils.Tensor(
"text_output",
np.array([output_text.encode('utf-8')], dtype=np.bytes_)
)
return pb_utils.InferenceResponse(output_tensors=[output_tensor])
def _get_config_param(self, key: str, default: str = None) -> str:
params = self.model_config.get('parameters', {})
if key in params:
return params[key].get('string_value', default)
return default
def _get_input_scalar(self, request, name: str, default=None):
tensor = pb_utils.get_input_tensor_by_name(request, name)
if tensor is None:
return default
return self._np_decoder(tensor.as_numpy()[0])
def _np_decoder(self, obj):
if isinstance(obj, bytes):
return obj.decode('utf-8')
if np.issubdtype(obj, np.integer):
return int(obj)
if np.issubdtype(obj, np.floating):
return round(float(obj), 3)
if isinstance(obj, np.bool_):
return bool(obj)
def finalize(self):
self.logger.log_info(f"Finalizing model {self.model_name}")
self.model = None
self.tokenizer = None
torch.cuda.empty_cache()

@ -1,66 +0,0 @@
---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
widget:
- example_title: Fibonacci (Python)
messages:
- role: system
content: You are a chatbot who can help code!
- role: user
content: Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Model
This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
#### How to use
You will need the transformers>=4.34
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# ...
```

@ -1,26 +0,0 @@
{
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "silu",
"hidden_size": 2048,
"initializer_range": 0.02,
"intermediate_size": 5632,
"max_position_embeddings": 2048,
"model_type": "llama",
"num_attention_heads": 32,
"num_hidden_layers": 22,
"num_key_value_heads": 4,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": null,
"rope_theta": 10000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.35.0",
"use_cache": true,
"vocab_size": 32000
}

131
config.pbtxt Normal file

@ -0,0 +1,131 @@
# Triton Backend for TransformerLLM.
backend: "python"
max_batch_size: 0
# Triton should expect as input a single string
# input of variable length named 'text_input'
input [
{
name: "text_input"
data_type: TYPE_STRING
dims: [ 1 ]
},
{
name: "max_length"
data_type: TYPE_INT32
dims: [ 1 ]
optional: true
},
{
name: "max_new_tokens"
data_type: TYPE_INT32
dims: [ 1 ]
optional: true
},
{
name: "do_sample"
data_type: TYPE_BOOL
dims: [ 1 ]
optional: true
},
{
name: "top_k"
data_type: TYPE_INT32
dims: [ 1 ]
optional: true
},
{
name: "top_p"
data_type: TYPE_FP32
dims: [ 1 ]
optional: true
},
{
name: "temperature"
data_type: TYPE_FP32
dims: [ 1 ]
optional: true
},
{
name: "repetition_penalty"
data_type: TYPE_FP32
dims: [ 1 ]
optional: true
},
{
name: "stream"
data_type: TYPE_BOOL
dims: [ 1 ]
optional: true
}
]
# Triton should expect to respond with a single string
# output of variable length named 'text_output'
output [
{
name: "text_output"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
parameters: [
{
key: "base_model_path",
value: {string_value: "/cheetah/input/model/groupuser/TinyLlama-1.1B-Chat-v1.0"}
},
{
key: "is_adapter_model",
value: {string_value: "false"}
},
{
key: "adapter_model_path",
value: {string_value: ""}
},
{
key: "quantization",
value: {string_value: "none"}
}
]
instance_group [
{
kind: KIND_AUTO
count: 1
}
]

@ -1,16 +0,0 @@
{
"epoch": 3.0,
"eval_logits/chosen": -2.707406759262085,
"eval_logits/rejected": -2.656524419784546,
"eval_logps/chosen": -370.1297607421875,
"eval_logps/rejected": -296.0738525390625,
"eval_loss": 0.513750433921814,
"eval_rewards/accuracies": 0.738095223903656,
"eval_rewards/chosen": -0.02744222804903984,
"eval_rewards/margins": 1.0087225437164307,
"eval_rewards/rejected": -1.03616464138031,
"eval_runtime": 93.5908,
"eval_samples": 2000,
"eval_samples_per_second": 21.37,
"eval_steps_per_second": 0.673
}

@ -1,7 +0,0 @@
{
"bos_token_id": 1,
"eos_token_id": 2,
"max_length": 2048,
"pad_token_id": 0,
"transformers_version": "4.35.0"
}

BIN
model.safetensors (Stored with Git LFS)

Binary file not shown.

@ -1,30 +0,0 @@
{
"bos_token": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"eos_token": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

File diff suppressed because it is too large Load Diff

BIN
tokenizer.model (Stored with Git LFS)

Binary file not shown.

@ -1,40 +0,0 @@
{
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"bos_token": "<s>",
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
"clean_up_tokenization_spaces": false,
"eos_token": "</s>",
"legacy": false,
"model_max_length": 2048,
"pad_token": "</s>",
"padding_side": "right",
"sp_model_kwargs": {},
"tokenizer_class": "LlamaTokenizer",
"unk_token": "<unk>",
"use_default_system_prompt": false
}