TinyLlama-1.1B-Chat-v1.0
Go to file
Supradeep Danturti 3a67035e2d
Adding Evaluation Results
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions
2024-12-02 22:27:31 +00:00
.gitattributes initial commit 2023-12-30 06:27:30 +00:00
config.json Update config.json 2023-12-31 03:34:42 +00:00
eval_results.json Model save 2023-12-30 12:27:37 +00:00
generation_config.json Model save 2023-12-30 12:27:37 +00:00
model.safetensors Model save 2023-12-30 12:27:37 +00:00
README.md Adding Evaluation Results 2024-12-02 22:27:31 +00:00
special_tokens_map.json Model save 2023-12-30 12:27:37 +00:00
tokenizer_config.json Model save 2023-12-30 12:27:37 +00:00
tokenizer.json Model save 2023-12-30 12:27:37 +00:00
tokenizer.model Upload tokenizer.model 2024-01-02 03:15:46 +00:00

language license datasets widget model-index
en
apache-2.0
cerebras/SlimPajama-627B
bigcode/starcoderdata
HuggingFaceH4/ultrachat_200k
HuggingFaceH4/ultrafeedback_binarized
example_title messages
Fibonacci (Python)
role content
system You are a chatbot who can help code!
role content
user Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.
name results
TinyLlama-1.1B-Chat-v1.0
task dataset metrics source
type name
text-generation Text Generation
name type args
IFEval (0-Shot) HuggingFaceH4/ifeval
num_few_shot
0
type value name
inst_level_strict_acc and prompt_level_strict_acc 5.96 strict accuracy
url name
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0 Open LLM Leaderboard
task dataset metrics source
type name
text-generation Text Generation
name type args
BBH (3-Shot) BBH
num_few_shot
3
type value name
acc_norm 4.01 normalized accuracy
url name
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0 Open LLM Leaderboard
task dataset metrics source
type name
text-generation Text Generation
name type args
MATH Lvl 5 (4-Shot) hendrycks/competition_math
num_few_shot
4
type value name
exact_match 0.91 exact match
url name
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0 Open LLM Leaderboard
task dataset metrics source
type name
text-generation Text Generation
name type args
GPQA (0-shot) Idavidrein/gpqa
num_few_shot
0
type value name
acc_norm 0.0 acc_norm
url name
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0 Open LLM Leaderboard
task dataset metrics source
type name
text-generation Text Generation
name type args
MuSR (0-shot) TAUR-Lab/MuSR
num_few_shot
0
type value name
acc_norm 4.31 acc_norm
url name
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0 Open LLM Leaderboard
task dataset metrics source
type name
text-generation Text Generation
name type config split args
MMLU-PRO (5-shot) TIGER-Lab/MMLU-Pro main test
num_few_shot
5
type value name
acc 1.12 accuracy
url name
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0 Open LLM Leaderboard

TinyLlama-1.1B

https://github.com/jzhang38/TinyLlama

The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.

We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.

This Model

This is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. We follow HF's Zephyr's training recipe. The model was " initially fine-tuned on a variant of the UltraChat dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with 🤗 TRL's DPOTrainer on the openbmb/UltraFeedback dataset, which contain 64k prompts and model completions that are ranked by GPT-4."

How to use

You will need the transformers>=4.34 Do check the TinyLlama github page for more information.

# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# ...

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 2.72
IFEval (0-Shot) 5.96
BBH (3-Shot) 4.01
MATH Lvl 5 (4-Shot) 0.91
GPQA (0-shot) 0.00
MuSR (0-shot) 4.31
MMLU-PRO (5-shot) 1.12