base-gemma-3-1b-it/config.pbtxt
2025-10-20 05:20:39 +00:00

150 lines
2.0 KiB
Plaintext

# Triton backend to use
name: "base-gemma-3-1b-it"
backend: "python"
max_batch_size: 15
# Triton should expect as input a single string
# input of variable length named 'text_input'
input [
{
name: "text_input"
data_type: TYPE_STRING
dims: [ -1 ]
},
{
name: "max_length"
data_type: TYPE_INT32
dims: [ 1 ]
optional: true
},
{
name: "max_new_tokens"
data_type: TYPE_INT32
dims: [ 1 ]
optional: true
},
{
name: "do_sample"
data_type: TYPE_BOOL
dims: [ 1 ]
optional: true
},
{
name: "top_k"
data_type: TYPE_INT32
dims: [ 1 ]
optional: true
},
{
name: "top_p"
data_type: TYPE_FP32
dims: [ 1 ]
optional: true
},
{
name: "temperature"
data_type: TYPE_FP32
dims: [ 1 ]
optional: true
},
{
name: "repetition_penalty"
data_type: TYPE_FP32
dims: [ 1 ]
optional: true
},
{
name: "stream"
data_type: TYPE_BOOL
dims: [ 1 ]
optional: true
}
]
# Triton should expect to respond with a single string
# output of variable length named 'text_output'
output [
{
name: "text_output"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
parameters: [
{
key: "base_model_path",
value: {string_value: "/cheetah/input/model/groupuser/base-gemma-3-1b-it"}
},
{
key: "is_adapter_model",
value: {string_value: "false"}
},
{
key: "adapter_model_path",
value: {string_value: ""}
},
{
key: "quantization",
value: {string_value: "int8"}
}
]
instance_group [
{
kind: KIND_AUTO
count: 1
}
]
# "model": {
# "name": "Llama-3.2-1B-Instruct",
# "backend": "TransformerLLM",
# "tensorrtllm": {
# "workers": 1,
# "maxSeqLen": 1,
# "kvCacheType": "paged",
# "maxInputLen": 1024,
# "maxNumTokens": 0
# },
# "maxBatchSize": 4,
# "quantization": "int4",
# "modelInstanceGroupKind": "KIND_GPU",
# "modelInstanceGroupCount": 1
# }