diff --git a/README.md b/README.md index 73c7dd6..cb5624a 100644 --- a/README.md +++ b/README.md @@ -6,51 +6,3 @@ tags: - sentence-similarity --- - -# {MODEL_NAME} - -This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. - - - -## Usage (Sentence-Transformers) - -Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: - -``` -pip install -U sentence-transformers -``` - -Then you can use the model like this: - -```python -from sentence_transformers import SentenceTransformer -sentences = ["This is an example sentence", "Each sentence is converted"] - -model = SentenceTransformer('{MODEL_NAME}') -embeddings = model.encode(sentences) -print(embeddings) -``` - - - -## Evaluation Results - - - -For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) - - - -## Full Model Architecture -``` -SentenceTransformer( - (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel - (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) - (2): Normalize() -) -``` - -## Citing & Authors - - \ No newline at end of file