bge-m3
Go to file
2024-01-28 11:04:11 +00:00
1_Pooling upload 2024-01-28 18:36:42 +08:00
.gitattributes Upload tokenizer.json 2024-01-28 10:38:09 +00:00
colbert_linear.pt upload 2024-01-28 18:36:42 +08:00
config_sentence_transformers.json upload 2024-01-28 18:36:42 +08:00
config.json Update config.json 2024-01-28 11:04:11 +00:00
model.safetensors upload 2024-01-28 18:36:42 +08:00
modules.json upload 2024-01-28 18:36:42 +08:00
pytorch_model.bin upload 2024-01-28 18:36:42 +08:00
README.md upload 2024-01-28 18:36:42 +08:00
sentence_bert_config.json upload 2024-01-28 18:36:42 +08:00
sentencepiece.bpe.model upload 2024-01-28 18:36:42 +08:00
sparse_linear.pt upload 2024-01-28 18:36:42 +08:00
special_tokens_map.json upload 2024-01-28 18:36:42 +08:00
tokenizer_config.json upload 2024-01-28 18:36:42 +08:00
tokenizer.json Upload tokenizer.json 2024-01-28 10:38:09 +00:00

pipeline_tag tags
sentence-similarity
sentence-transformers
feature-extraction
sentence-similarity

{MODEL_NAME}

This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)

Citing & Authors