Convert dataset to Parquet (#5)

- Convert dataset to Parquet (610bdae015434d0a02e81468da0abb51c2164bc8)
- Delete loading script (1087fc1e105aad8fa3a6730edb6619b43ec420b5)
- Delete legacy dataset_infos.json (2fa85f972ae01fb2956c9925f7c420be7214de12)
This commit is contained in:
Albert Villanova 2024-01-04 12:09:45 +00:00 committed by system
parent 9c6ede893f
commit e6281661ce
6 changed files with 43 additions and 136 deletions

@ -1,5 +1,4 @@
---
pretty_name: IMDB
annotations_creators:
- expert-generated
language_creators:
@ -19,6 +18,40 @@ task_categories:
task_ids:
- sentiment-classification
paperswithcode_id: imdb-movie-reviews
pretty_name: IMDB
dataset_info:
config_name: plain_text
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': neg
'1': pos
splits:
- name: train
num_bytes: 33432823
num_examples: 25000
- name: test
num_bytes: 32650685
num_examples: 25000
- name: unsupervised
num_bytes: 67106794
num_examples: 50000
download_size: 83446840
dataset_size: 133190302
configs:
- config_name: plain_text
data_files:
- split: train
path: plain_text/train-*
- split: test
path: plain_text/test-*
- split: unsupervised
path: plain_text/unsupervised-*
default: true
train-eval-index:
- config: plain_text
task: text-classification
@ -68,29 +101,6 @@ train-eval-index:
name: Recall weighted
args:
average: weighted
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: neg
1: pos
config_name: plain_text
splits:
- name: train
num_bytes: 33432835
num_examples: 25000
- name: test
num_bytes: 32650697
num_examples: 25000
- name: unsupervised
num_bytes: 67106814
num_examples: 50000
download_size: 84125825
dataset_size: 133190346
---
# Dataset Card for "imdb"

@ -1 +0,0 @@
{"plain_text": {"description": "Large Movie Review Dataset.\nThis is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.", "citation": "@InProceedings{maas-EtAl:2011:ACL-HLT2011,\n author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},\n title = {Learning Word Vectors for Sentiment Analysis},\n booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},\n month = {June},\n year = {2011},\n address = {Portland, Oregon, USA},\n publisher = {Association for Computational Linguistics},\n pages = {142--150},\n url = {http://www.aclweb.org/anthology/P11-1015}\n}\n", "homepage": "http://ai.stanford.edu/~amaas/data/sentiment/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label", "labels": ["neg", "pos"]}], "builder_name": "imdb", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 33432835, "num_examples": 25000, "dataset_name": "imdb"}, "test": {"name": "test", "num_bytes": 32650697, "num_examples": 25000, "dataset_name": "imdb"}, "unsupervised": {"name": "unsupervised", "num_bytes": 67106814, "num_examples": 50000, "dataset_name": "imdb"}}, "download_checksums": {"http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz": {"num_bytes": 84125825, "checksum": "c40f74a18d3b61f90feba1e17730e0d38e8b97c05fde7008942e91923d1658fe"}}, "download_size": 84125825, "post_processing_size": null, "dataset_size": 133190346, "size_in_bytes": 217316171}}

111
imdb.py

@ -1,111 +0,0 @@
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""IMDB movie reviews dataset."""
import datasets
from datasets.tasks import TextClassification
_DESCRIPTION = """\
Large Movie Review Dataset.
This is a dataset for binary sentiment classification containing substantially \
more data than previous benchmark datasets. We provide a set of 25,000 highly \
polar movie reviews for training, and 25,000 for testing. There is additional \
unlabeled data for use as well.\
"""
_CITATION = """\
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
title = {Learning Word Vectors for Sentiment Analysis},
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
month = {June},
year = {2011},
address = {Portland, Oregon, USA},
publisher = {Association for Computational Linguistics},
pages = {142--150},
url = {http://www.aclweb.org/anthology/P11-1015}
}
"""
_DOWNLOAD_URL = "https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"
class IMDBReviewsConfig(datasets.BuilderConfig):
"""BuilderConfig for IMDBReviews."""
def __init__(self, **kwargs):
"""BuilderConfig for IMDBReviews.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
class Imdb(datasets.GeneratorBasedBuilder):
"""IMDB movie reviews dataset."""
BUILDER_CONFIGS = [
IMDBReviewsConfig(
name="plain_text",
description="Plain text",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
),
supervised_keys=None,
homepage="http://ai.stanford.edu/~amaas/data/sentiment/",
citation=_CITATION,
task_templates=[TextClassification(text_column="text", label_column="label")],
)
def _split_generators(self, dl_manager):
archive = dl_manager.download(_DOWNLOAD_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"}
),
datasets.SplitGenerator(
name=datasets.Split("unsupervised"),
gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train", "labeled": False},
),
]
def _generate_examples(self, files, split, labeled=True):
"""Generate aclImdb examples."""
# For labeled examples, extract the label from the path.
if labeled:
label_mapping = {"pos": 1, "neg": 0}
for path, f in files:
if path.startswith(f"aclImdb/{split}"):
label = label_mapping.get(path.split("/")[2])
if label is not None:
yield path, {"text": f.read().decode("utf-8"), "label": label}
else:
for path, f in files:
if path.startswith(f"aclImdb/{split}"):
if path.split("/")[2] == "unsup":
yield path, {"text": f.read().decode("utf-8"), "label": -1}

BIN
plain_text/test-00000-of-00001.parquet (Stored with Git LFS) Normal file

Binary file not shown.

BIN
plain_text/train-00000-of-00001.parquet (Stored with Git LFS) Normal file

Binary file not shown.

BIN
plain_text/unsupervised-00000-of-00001.parquet (Stored with Git LFS) Normal file

Binary file not shown.