Support for attention_mask in forward pass.
This commit implements the following: - Cleans up unused arguments and definitions. - Adds support for `attention_mask`. - Adds support for cached inference.
This commit is contained in:
parent
4a426d8015
commit
3128bb636a
@ -118,7 +118,7 @@ text = tokenizer.batch_decode(outputs)[0]
|
||||
print(text)
|
||||
```
|
||||
|
||||
**Remark.** In the generation function, our model currently does not support beam search (`num_beams` >1) and `attention_mask' parameters.
|
||||
**Remark.** In the generation function, our model currently does not support beam search (`num_beams` >1).
|
||||
Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings (instead of the model's).
|
||||
|
||||
### Citation
|
||||
|
||||
@ -1,13 +1,6 @@
|
||||
{
|
||||
"_name_or_path": "phi-1.5-half",
|
||||
"activation_function": "gelu_new",
|
||||
"architecture": {
|
||||
"block_cls": "parallel",
|
||||
"mixer": {},
|
||||
"mlp": {
|
||||
"mlp_cls": "mlp"
|
||||
}
|
||||
},
|
||||
"architectures": [
|
||||
"MixFormerSequentialForCausalLM"
|
||||
],
|
||||
@ -15,7 +8,6 @@
|
||||
"AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
|
||||
"AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
|
||||
},
|
||||
"embd_layer": "default",
|
||||
"embd_pdrop": 0.0,
|
||||
"initializer_range": 0.02,
|
||||
"layer_norm_epsilon": 1e-05,
|
||||
@ -25,7 +17,6 @@
|
||||
"n_inner": null,
|
||||
"n_layer": 24,
|
||||
"n_positions": 2048,
|
||||
"phyagi_version": "0.0.4.dev",
|
||||
"resid_pdrop": 0.0,
|
||||
"rotary_dim": 32,
|
||||
"tie_word_embeddings": false,
|
||||
|
||||
@ -17,8 +17,6 @@ class MixFormerSequentialConfig(PretrainedConfig):
|
||||
"hidden_size": "n_embd",
|
||||
"num_attention_heads": "n_head",
|
||||
"num_hidden_layers": "n_layer",
|
||||
"input_emb_layer": "embd_layer", # `input_emb_layer` key is for backward compatibility
|
||||
"blocks": "architecture", # `blocks` key is for backward compatibility
|
||||
}
|
||||
|
||||
def __init__(
|
||||
@ -31,8 +29,6 @@ class MixFormerSequentialConfig(PretrainedConfig):
|
||||
n_head: Optional[int] = 16,
|
||||
rotary_dim: Optional[int] = 32,
|
||||
activation_function: Optional[str] = "gelu_new",
|
||||
embd_layer: Optional[str] = "default",
|
||||
architecture: Union[Dict[str, Any], List[Dict[str, Any]]] = None,
|
||||
embd_pdrop: Optional[float] = 0.0,
|
||||
resid_pdrop: Optional[float] = 0.0,
|
||||
layer_norm_epsilon: Optional[float] = 1e-5,
|
||||
@ -49,8 +45,6 @@ class MixFormerSequentialConfig(PretrainedConfig):
|
||||
self.n_head = n_head
|
||||
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
||||
self.activation_function = activation_function
|
||||
self.embd_layer = embd_layer
|
||||
self.architecture = architecture
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
#
|
||||
# BSD 3-Clause License
|
||||
#
|
||||
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
||||
@ -50,16 +50,38 @@ from .configuration_mixformer_sequential import MixFormerSequentialConfig
|
||||
|
||||
@dataclass
|
||||
class InferenceParams:
|
||||
"""Inference parameters that are passed to the main model in order
|
||||
to efficienly calculate and store the context during inference.
|
||||
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
||||
max_sequence_len: int
|
||||
max_batch_size: int
|
||||
sequence_len_offset: int = 0
|
||||
batch_size_offset: int = 0
|
||||
key_value_memory_dict: dict = field(default_factory=dict)
|
||||
fused_ft_kernel: bool = False
|
||||
lengths_per_sample: Optional[torch.Tensor] = None
|
||||
"""Inference parameters passed to model to efficiently calculate
|
||||
and store context during inference.
|
||||
|
||||
Reference:
|
||||
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
||||
|
||||
Args:
|
||||
max_sequence_len: Maximum sequence length.
|
||||
max_batch_size: Maximum batch size.
|
||||
sequence_len_offset: Sequence length offset.
|
||||
batch_size_offset: Batch size offset.
|
||||
key_value_memory_dict: Key value memory dictionary.
|
||||
fused_ft_kernel: Whether to use fused kernel for fast inference.
|
||||
lengths_per_sample: Lengths per sample.
|
||||
|
||||
"""
|
||||
|
||||
max_sequence_len: int = field(metadata={"help": "Maximum sequence length."})
|
||||
|
||||
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
||||
|
||||
sequence_len_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
|
||||
|
||||
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
||||
|
||||
key_value_memory_dict: Dict[str, Any] = field(
|
||||
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
||||
)
|
||||
|
||||
fused_ft_kernel: bool = field(default=False, metadata={"help": "Whether to use fused kernel for fast inference."})
|
||||
|
||||
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
|
||||
|
||||
|
||||
class Embedding(nn.Module):
|
||||
@ -80,14 +102,19 @@ class Embedding(nn.Module):
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class RotaryEmbedding(nn.Module):
|
||||
"""PyTorch implementation of `flash-attn` RotaryEmbedding layer.
|
||||
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
||||
"""Rotary embeddings.
|
||||
|
||||
Reference:
|
||||
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
base: Optional[int] = 10000,
|
||||
base: int = 10000,
|
||||
scale_base: Optional[float] = None,
|
||||
device: Optional[str] = None,
|
||||
**kwargs,
|
||||
@ -119,7 +146,7 @@ class RotaryEmbedding(nn.Module):
|
||||
self._cos_k_cached = None
|
||||
self._sin_k_cached = None
|
||||
|
||||
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: Optional[int] = 0) -> None:
|
||||
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: int = 0) -> None:
|
||||
# Reset the tables if the sequence length has changed,
|
||||
# or if we're on a new device (possibly due to tracing for instance)
|
||||
seqlen = x.shape[1] + seqlen_offset
|
||||
@ -153,7 +180,7 @@ class RotaryEmbedding(nn.Module):
|
||||
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
|
||||
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
|
||||
|
||||
def apply_rotary_emb_qkv(
|
||||
def _apply_rotary_emb_qkv(
|
||||
self,
|
||||
qkv: torch.FloatTensor,
|
||||
sin: torch.FloatTensor,
|
||||
@ -189,7 +216,6 @@ class RotaryEmbedding(nn.Module):
|
||||
|
||||
# Computes the new keys and queries, recasting to original dtype
|
||||
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
||||
|
||||
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
||||
|
||||
return torch.cat(
|
||||
@ -202,47 +228,9 @@ class RotaryEmbedding(nn.Module):
|
||||
)
|
||||
|
||||
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Perform the forward pass.
|
||||
|
||||
Args:
|
||||
qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim).
|
||||
seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch.
|
||||
|
||||
Returns:
|
||||
New `qkv` and the cached sinusoids.
|
||||
|
||||
"""
|
||||
|
||||
# `qkv` is of shape (batch, seqlen, 3, nheads, headdim)
|
||||
self._update_cos_sin_cache(qkv, seqlen_offset)
|
||||
|
||||
return self.apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
|
||||
|
||||
def _update_kv_cache(kv, inference_params, layer_idx):
|
||||
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
||||
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
||||
# Pre-allocate memory for key-values for inference.
|
||||
num_heads, head_dim = kv.shape[-2:]
|
||||
if layer_idx not in inference_params.key_value_memory_dict:
|
||||
kv_cache = torch.empty(
|
||||
inference_params.max_batch_size, inference_params.max_sequence_len, 2,
|
||||
num_heads, head_dim, dtype=kv.dtype, device=kv.device
|
||||
)
|
||||
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
||||
else:
|
||||
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
||||
|
||||
# Adjust key and value for inference
|
||||
batch_start = inference_params.batch_size_offset
|
||||
batch_end = batch_start + kv.shape[0]
|
||||
sequence_start = inference_params.sequence_len_offset
|
||||
sequence_end = sequence_start + kv.shape[1]
|
||||
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
|
||||
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
|
||||
|
||||
assert kv_cache is not None
|
||||
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
||||
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
||||
return kv
|
||||
return self._apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
@ -267,17 +255,6 @@ class MLP(nn.Module):
|
||||
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
||||
self.act = ACT2FN[act_fn]
|
||||
|
||||
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
||||
old_keys = [prefix + "fc_in.weight", prefix + "fc_out.weight", prefix + "fc_in.bias", prefix + "fc_out.bias"]
|
||||
new_keys = [prefix + "fc1.weight", prefix + "fc2.weight", prefix + "fc1.bias", prefix + "fc2.bias"]
|
||||
|
||||
if all(k in state_dict for k in old_keys) and not all(k in state_dict for k in new_keys):
|
||||
# Older version of `MLP` saved with different key names.
|
||||
for old_key, new_key in zip(old_keys, new_keys):
|
||||
state_dict[new_key] = state_dict.pop(old_key)
|
||||
|
||||
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
||||
|
||||
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
||||
hidden_states = self.fc1(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
@ -286,132 +263,114 @@ class MLP(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FusedMLP(nn.Module):
|
||||
"""Fused Multi-Layer Perceptron from `flash-attn`.
|
||||
class SelfAttention(nn.Module):
|
||||
"""Self-attention layer (compatible with PyTorch).
|
||||
|
||||
Reference:
|
||||
https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/ops/fused_dense.py.
|
||||
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
||||
|
||||
"""
|
||||
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None,
|
||||
raise_on_missing: bool = False) -> None:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
causal: bool = True,
|
||||
softmax_scale: Optional[float] = None,
|
||||
attention_dropout: float = 0.0,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
act_fn = config.activation_function if act_fn is None else act_fn
|
||||
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
||||
|
||||
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
||||
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
||||
|
||||
gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"]
|
||||
activation = "gelu_approx" if act_fn in gelu_activations else "relu"
|
||||
|
||||
self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn)
|
||||
|
||||
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
||||
return self.mlp(hidden_states)
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
"""Implement the scaled dot product attention with softmax.
|
||||
Adapted from https://github.com/Dao-AILab/flash-attention.
|
||||
Arguments
|
||||
---------
|
||||
softmax_scale: The temperature to use for the softmax attention.
|
||||
(default: 1/sqrt(d_keys) where d_keys is computed at
|
||||
runtime)
|
||||
attention_dropout: The dropout rate to apply to the attention
|
||||
(default: 0.0)
|
||||
"""
|
||||
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
||||
super().__init__()
|
||||
self.causal = causal
|
||||
self.softmax_scale = softmax_scale
|
||||
self.drop = nn.Dropout(attention_dropout)
|
||||
|
||||
def forward(self, qkv, causal=None, key_padding_mask=None):
|
||||
"""Implements the multihead softmax attention.
|
||||
Arguments
|
||||
---------
|
||||
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
||||
causal: if passed, will override self.causal
|
||||
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
||||
False means to mask out. (B, S)
|
||||
"""
|
||||
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
||||
def forward(
|
||||
self,
|
||||
qkv: torch.FloatTensor,
|
||||
causal: bool = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
causal = self.causal if causal is None else causal
|
||||
batch_size, seq_len = qkv.shape[0], qkv.shape[1]
|
||||
q, k, v = qkv.unbind(dim=2)
|
||||
|
||||
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
||||
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
||||
if key_padding_mask is not None:
|
||||
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
|
||||
device=scores.device)
|
||||
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
||||
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
||||
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
||||
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
||||
|
||||
if attention_mask is not None:
|
||||
padding_mask = torch.full((batch_size, seq_len), -10000.0, dtype=scores.dtype, device=scores.device)
|
||||
padding_mask.masked_fill_(attention_mask, 0.0)
|
||||
|
||||
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
||||
|
||||
if causal:
|
||||
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
||||
# So we have to construct the mask in float
|
||||
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
||||
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
||||
causal_mask = torch.triu(torch.full((seq_len, seq_len), -10000.0, device=scores.device), 1)
|
||||
scores = scores + causal_mask.to(dtype=scores.dtype)
|
||||
|
||||
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
||||
attention_drop = self.drop(attention)
|
||||
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
||||
attention = self.drop(attention)
|
||||
|
||||
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
"""Implement the scaled dot product attention with softmax.
|
||||
Adapted from https://github.com/Dao-AILab/flash-attention.
|
||||
Arguments
|
||||
---------
|
||||
softmax_scale: The temperature to use for the softmax attention.
|
||||
(default: 1/sqrt(d_keys) where d_keys is computed at
|
||||
runtime)
|
||||
attention_dropout: The dropout rate to apply to the attention
|
||||
(default: 0.0)
|
||||
"""Cross-attention layer (compatible with PyTorch).
|
||||
|
||||
Reference:
|
||||
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
||||
|
||||
"""
|
||||
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
causal: bool = True,
|
||||
softmax_scale: Optional[float] = None,
|
||||
attention_dropout: float = 0.0,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.causal = causal
|
||||
self.softmax_scale = softmax_scale
|
||||
self.drop = nn.Dropout(attention_dropout)
|
||||
|
||||
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
||||
"""Implements the multihead softmax attention.
|
||||
Arguments
|
||||
---------
|
||||
q: The tensor containing the query. (B, Sq, H, D)
|
||||
kv: The tensor containing the key and value. (B, Sk, 2, H, D)
|
||||
causal: if passed, will override self.causal
|
||||
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
||||
False means to mask out. (B, Sk)
|
||||
"""
|
||||
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
||||
def forward(
|
||||
self,
|
||||
q: torch.FloatTensor,
|
||||
kv: torch.FloatTensor,
|
||||
causal: bool = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
causal = self.causal if causal is None else causal
|
||||
seqlen_k = kv.shape[1]
|
||||
batch_size, seq_len_q = q.shape[0], q.shape[1]
|
||||
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
|
||||
|
||||
seq_len_k = kv.shape[1]
|
||||
k, v = kv.unbind(dim=2)
|
||||
|
||||
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
||||
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
||||
if key_padding_mask is not None:
|
||||
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
|
||||
device=scores.device)
|
||||
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
||||
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
||||
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
||||
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
||||
|
||||
if attention_mask is not None:
|
||||
padding_mask = torch.full((batch_size, seq_len_k), -10000.0, dtype=scores.dtype, device=scores.device)
|
||||
padding_mask.masked_fill_(attention_mask, 0.0)
|
||||
|
||||
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
||||
|
||||
if causal:
|
||||
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
||||
# So we have to construct the mask in float
|
||||
causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
|
||||
device=scores.device), 1)
|
||||
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
||||
causal_mask = torch.triu(torch.full((seq_len_q, seq_len_k), -10000.0, device=scores.device), 1)
|
||||
scores = scores + causal_mask.to(dtype=scores.dtype)
|
||||
|
||||
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
||||
attention_drop = self.drop(attention)
|
||||
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
||||
attention = self.drop(attention)
|
||||
|
||||
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def find_mha_dims(
|
||||
config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None
|
||||
) -> Tuple[int, int]:
|
||||
@ -445,152 +404,163 @@ def find_mha_dims(
|
||||
return n_head, head_dim
|
||||
|
||||
|
||||
def update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
|
||||
"""Update the key-value cache for inference.
|
||||
|
||||
Reference:
|
||||
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
||||
|
||||
Args:
|
||||
kv: Key-value tensor.
|
||||
inference_params: Inference parameters.
|
||||
layer_idx: Layer index.
|
||||
|
||||
Returns:
|
||||
Updated key-value tensor.
|
||||
|
||||
"""
|
||||
|
||||
num_heads, head_dim = kv.shape[-2:]
|
||||
|
||||
if layer_idx not in inference_params.key_value_memory_dict:
|
||||
kv_cache = torch.empty(
|
||||
inference_params.max_batch_size,
|
||||
inference_params.max_sequence_len,
|
||||
2,
|
||||
num_heads,
|
||||
head_dim,
|
||||
dtype=kv.dtype,
|
||||
device=kv.device,
|
||||
)
|
||||
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
||||
else:
|
||||
if not inference_params.fused_ft_kernel:
|
||||
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
||||
else:
|
||||
k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx]
|
||||
kv_cache = None
|
||||
|
||||
batch_start = inference_params.batch_size_offset
|
||||
batch_end = batch_start + kv.shape[0]
|
||||
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
|
||||
|
||||
sequence_start = inference_params.sequence_len_offset
|
||||
sequence_end = sequence_start + kv.shape[1]
|
||||
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
|
||||
|
||||
if not inference_params.fused_ft_kernel:
|
||||
assert kv_cache is not None
|
||||
|
||||
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
||||
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
||||
|
||||
return kv
|
||||
|
||||
assert inference_params.sequence_len_offset == 0
|
||||
assert kv.dtype in [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
packsize = 4 if kv.dtype == torch.float32 else 8
|
||||
|
||||
if kv_cache is not None:
|
||||
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
||||
k_cache = rearrange(kv_cache[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize).contiguous()
|
||||
v_cache = rearrange(kv_cache[:, :, 1], "b s h d -> b h s d").contiguous()
|
||||
inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache)
|
||||
else:
|
||||
k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange(
|
||||
kv[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize
|
||||
)
|
||||
v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange(kv[:, :, 1], "b s h d -> b h s d")
|
||||
|
||||
return kv
|
||||
|
||||
|
||||
class MHA(nn.Module):
|
||||
"""Multi-head attention layer.
|
||||
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
||||
"""Multi-head attention layer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[str] = None,
|
||||
rotary_dim: Optional[int] = None,
|
||||
rotary_emb_scale_base: Optional[float] = None,
|
||||
n_head: Optional[int] = None,
|
||||
head_dim: Optional[int] = None,
|
||||
bias: Optional[bool] = True,
|
||||
dropout: Optional[float] = 0.0,
|
||||
bias: bool = True,
|
||||
causal: bool = True,
|
||||
softmax_scale: Optional[float] = None,
|
||||
causal: Optional[bool] = True,
|
||||
dropout: float = 0.0,
|
||||
layer_idx: Optional[int] = None,
|
||||
rotary_emb_scale_base: Optional[float] = None,
|
||||
return_residual: Optional[bool] = False,
|
||||
checkpointing: Optional[bool] = False,
|
||||
device: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
fused_dense: Optional[bool] = True,
|
||||
flash_attn: Optional[bool] = True,
|
||||
cutlass_attn: Optional[bool] = False,
|
||||
flash_rotary: Optional[bool] = True,
|
||||
raise_on_missing: Optional[bool] = False
|
||||
return_residual: bool = False,
|
||||
checkpointing: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
n_head, head_dim = find_mha_dims(config, n_head, head_dim)
|
||||
|
||||
self.hidden_size = config.n_embd
|
||||
self.n_head = n_head
|
||||
self.head_dim = head_dim
|
||||
self.op_size = n_head * head_dim
|
||||
|
||||
self.causal = causal
|
||||
self.layer_idx = layer_idx
|
||||
# Rotary embedding
|
||||
self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
||||
self.fused_dense = fused_dense
|
||||
self.flash_attn = flash_attn
|
||||
self.cutlass_attn = cutlass_attn
|
||||
self.flash_rotary = flash_rotary
|
||||
self.return_residual = return_residual
|
||||
self.checkpointing = checkpointing
|
||||
|
||||
if self.rotary_emb_dim > 0:
|
||||
rotary_kwargs = {"device": device}
|
||||
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
|
||||
rotary_kwargs["scale_base"] = rotary_emb_scale_base
|
||||
|
||||
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
||||
else:
|
||||
pass
|
||||
|
||||
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.op_size, bias=bias, **factory_kwargs)
|
||||
self.out_proj = nn.Linear(self.op_size, self.hidden_size, bias=bias, **factory_kwargs)
|
||||
# MLP
|
||||
self.n_head, self.head_dim = find_mha_dims(config, n_head, head_dim)
|
||||
op_size = self.n_head * self.head_dim
|
||||
hidden_size = config.n_embd
|
||||
|
||||
self.Wqkv = nn.Linear(hidden_size, 3 * op_size, bias=bias, device=device, dtype=dtype)
|
||||
self.out_proj = nn.Linear(op_size, hidden_size, bias=bias, device=device, dtype=dtype)
|
||||
|
||||
# Attention
|
||||
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
||||
self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
||||
|
||||
def _update_kv_cache(self, kv: torch.FloatTensor, inference_params: InferenceParams) -> None:
|
||||
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
||||
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
||||
|
||||
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
|
||||
|
||||
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
||||
self.layer_idx = layer_idx
|
||||
self.return_residual = return_residual
|
||||
self.checkpointing = checkpointing
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.FloatTensor,
|
||||
x_kv: Optional[torch.FloatTensor] = None,
|
||||
key_padding_mask: Optional[torch.BoolTensor] = None,
|
||||
past_key_values: Optional[InferenceParams] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
cu_seqlens: Optional[torch.LongTensor] = None,
|
||||
max_seqlen: Optional[int] = None,
|
||||
mixer_subset: Optional[torch.LongTensor] = None,
|
||||
past_cache: Optional[InferenceParams] = None,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
||||
"""Perform the forward pass.
|
||||
|
||||
Args:
|
||||
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
||||
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
||||
is the is the sum of the sequence lengths in the batch.
|
||||
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
||||
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
||||
(batch, seqlen). Only applicable when not using FlashAttention.
|
||||
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
||||
of the sequences in the batch, used to index into x. Only applicable when using
|
||||
FlashAttention.
|
||||
max_seqlen: int. Maximum sequence length in the batch.
|
||||
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
||||
before applying the query projection. Useful for e.g., ViT where we only care
|
||||
about the CLS token in the last layer.
|
||||
past_cache: For generation only.
|
||||
|
||||
Returns:
|
||||
(batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None,
|
||||
else (total, hidden_dim) where total is the is the sum of the sequence lengths
|
||||
in the batch.
|
||||
|
||||
"""
|
||||
|
||||
if cu_seqlens is not None:
|
||||
assert max_seqlen is not None
|
||||
assert key_padding_mask is None
|
||||
assert self.flash_attn
|
||||
assert self.rotary_emb_dim == 0
|
||||
|
||||
if key_padding_mask is not None:
|
||||
assert cu_seqlens is None
|
||||
assert max_seqlen is None
|
||||
assert not self.flash_attn
|
||||
|
||||
if past_cache is not None:
|
||||
assert key_padding_mask is None
|
||||
assert cu_seqlens is None and max_seqlen is None
|
||||
|
||||
attn_kwargs = {"key_padding_mask": key_padding_mask}
|
||||
|
||||
assert x_kv is None and mixer_subset is None
|
||||
|
||||
qkv = self.Wqkv(x)
|
||||
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
||||
|
||||
if past_cache is None:
|
||||
seqlen_offset = past_key_values.sequence_len_offset if past_key_values is not None else 0
|
||||
if self.rotary_emb_dim > 0:
|
||||
qkv = self.rotary_emb(qkv)
|
||||
context = self.inner_attn(qkv, **attn_kwargs)
|
||||
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset)
|
||||
|
||||
if past_key_values is not None:
|
||||
kv = update_kv_cache(qkv[:, :, 1:], past_key_values, self.layer_idx)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask, cu_seqlens, max_seqlen = attention_mask
|
||||
attention_mask = attention_mask.to(qkv.device)
|
||||
|
||||
attention_kwargs = {"attention_mask": attention_mask}
|
||||
|
||||
if past_key_values is None or seqlen_offset == 0:
|
||||
if self.checkpointing:
|
||||
attn_output = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **attention_kwargs)
|
||||
else:
|
||||
attn_output = self.inner_attn(qkv, **attention_kwargs)
|
||||
else:
|
||||
if self.rotary_emb_dim > 0:
|
||||
qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset)
|
||||
q = qkv[:, :, 0]
|
||||
kv = self._update_kv_cache(qkv[:, :, 1:], past_cache)
|
||||
# If we're processing the prompt, causal=None (use self.causal).
|
||||
# If we're decoding, then causal=False.
|
||||
causal = None if past_cache.sequence_len_offset == 0 else False
|
||||
context = self.inner_cross_attn(q, kv, causal=causal)
|
||||
causal = None if past_key_values.sequence_len_offset == 0 else False
|
||||
attn_output = self.inner_cross_attn(q, kv, causal=causal, **attention_kwargs)
|
||||
|
||||
out = rearrange(context, "... h d -> ... (h d)")
|
||||
out = self.out_proj(out)
|
||||
output = rearrange(attn_output, "... h d -> ... (h d)")
|
||||
output = self.out_proj(output)
|
||||
|
||||
return output if not self.return_residual else (output, x)
|
||||
|
||||
return out if not self.return_residual else (out, x)
|
||||
|
||||
class ParallelBlock(nn.Module):
|
||||
"""Parallel block.
|
||||
@ -602,8 +572,6 @@ class ParallelBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
mixer: Optional[Dict[str, Any]] = None,
|
||||
mlp: Optional[Dict[str, Any]] = None,
|
||||
block_idx: Optional[int] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
@ -612,19 +580,20 @@ class ParallelBlock(nn.Module):
|
||||
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
||||
self.block_idx = block_idx
|
||||
|
||||
self.mixer = MHA(config=config, **mixer, layer_idx=block_idx)
|
||||
mlp_cls = mlp.pop('mlp_cls')
|
||||
if mlp_cls == 'fused_mlp':
|
||||
self.mlp = FusedMLP(config=config, **mlp)
|
||||
else:
|
||||
self.mlp = MLP(config=config, **mlp)
|
||||
self.mixer = MHA(config, layer_idx=block_idx)
|
||||
self.mlp = MLP(config)
|
||||
|
||||
def forward(self, hidden_states: torch.FloatTensor,
|
||||
past_cache: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln(hidden_states)
|
||||
|
||||
attn_outputs = self.mixer(hidden_states, past_cache=past_cache)
|
||||
attn_outputs = self.mixer(hidden_states, past_key_values=past_key_values, attention_mask=attention_mask)
|
||||
if isinstance(attn_outputs, tuple):
|
||||
attn_outputs = attn_outputs[0]
|
||||
|
||||
@ -635,6 +604,7 @@ class ParallelBlock(nn.Module):
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CausalLMHead(nn.Module):
|
||||
"""Causal Language Modeling head.
|
||||
|
||||
@ -666,7 +636,7 @@ class CausalLMLoss(nn.Module):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, shift_labels: Optional[bool] = True) -> None:
|
||||
def __init__(self, shift_labels: bool = True) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.shift_labels = shift_labels
|
||||
@ -681,6 +651,7 @@ class CausalLMLoss(nn.Module):
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
||||
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
|
||||
|
||||
@ -691,9 +662,35 @@ class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
||||
def __init__(self, *inputs, **kwargs) -> None:
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs) -> Dict[str, Any]:
|
||||
if "use_cache" in kwargs and not kwargs["use_cache"]:
|
||||
return {"input_ids": input_ids}
|
||||
def _init_weights(self, module: nn.Module) -> None:
|
||||
if isinstance(module, (nn.Linear,)):
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
**kwargs,
|
||||
) -> Dict[str, Any]:
|
||||
if attention_mask is not None and torch.any(~attention_mask.bool()):
|
||||
total_seq_len = torch.sum(attention_mask, dim=1)
|
||||
max_seq_len = torch.max(total_seq_len)
|
||||
|
||||
total_seq_len = torch.cat((torch.tensor([0], device=attention_mask.device), total_seq_len)).unsqueeze(1)
|
||||
cumulative_seq_len = torch.cumsum(total_seq_len, dim=0).squeeze(1).to(torch.int32)
|
||||
attention_mask = (attention_mask.bool(), cumulative_seq_len, max_seq_len.item())
|
||||
else:
|
||||
attention_mask = None
|
||||
|
||||
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
||||
past_key_values = InferenceParams(
|
||||
@ -705,11 +702,15 @@ class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
||||
key_value_memory_dict={},
|
||||
)
|
||||
else:
|
||||
# assume past_key_values has cached all but last token in input_ids
|
||||
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
||||
past_key_values.sequence_len_offset = len(input_ids[0]) - 1
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs}
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
|
||||
|
||||
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
||||
@ -723,23 +724,7 @@ class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
modules = [Embedding(config)]
|
||||
block_config = config.architecture
|
||||
|
||||
if not isinstance(block_config, list):
|
||||
block_config = [block_config for _ in range(config.n_layer)]
|
||||
|
||||
if config.n_layer != len(block_config):
|
||||
config.n_layer = len(block_config)
|
||||
|
||||
for block_idx, block in enumerate(block_config):
|
||||
# `block_cls` with `legacy` value is for backward compatibility
|
||||
# `path` key is for backward compatibility
|
||||
block = copy.deepcopy(block) or {"block_cls": "parallel"}
|
||||
block_cls = block.pop("path", None) or block.pop("block_cls", None)
|
||||
|
||||
block["block_idx"] = block_idx
|
||||
modules.append(ParallelBlock(config, **block))
|
||||
|
||||
modules += [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
|
||||
modules.append(CausalLMHead(config))
|
||||
|
||||
self.layers = nn.Sequential(*modules)
|
||||
@ -760,16 +745,22 @@ class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
||||
self.layers[-1].linear = new_embeddings
|
||||
|
||||
def forward(
|
||||
self, input_ids: torch.LongTensor, labels: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[torch.FloatTensor] = None, **kwargs
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> CausalLMOutputWithPast:
|
||||
if attention_mask is not None and self.training:
|
||||
raise ValueError("`attention_mask` is not supported during training.")
|
||||
|
||||
if not past_key_values:
|
||||
if past_key_values is None and attention_mask is None:
|
||||
lm_logits = self.layers(input_ids)
|
||||
else:
|
||||
hidden_layer = self.layers[0](input_ids)
|
||||
for module in self.layers[1:-1]:
|
||||
hidden_layer = module(hidden_layer, past_cache=past_key_values)
|
||||
hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask)
|
||||
lm_logits = self.layers[-1](hidden_layer)
|
||||
|
||||
loss = None
|
||||
|
||||
Loading…
Reference in New Issue
Block a user