diff --git a/README.md b/README.md index 4c6a857..9a40935 100644 --- a/README.md +++ b/README.md @@ -35,18 +35,24 @@ where the model generates the text after "Bob:". #### Code format: ```python +\`\`\`python def print_prime(n): """ Print all primes between 1 and n """ primes = [] for num in range(2, n+1): - for i in range(2, num): + is_prime = True + for i in range(2, int(num**0.5)+1): if num % i == 0: + is_prime = False break - else: + if is_prime: primes.append(num) print(primes) + +print_prime(20) +\`\`\` ``` where the model generates the text after the comments. (Note: This is a legitimate and correct use of the else statement in Python loops.) @@ -81,6 +87,26 @@ where the model generates the text after the comments. (Note: This is a legitima ### License The model is licensed under the [Research License](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx). +### Sample Code +```python +import torch +from transformers import AutoModelForCausalLM, AutoTokenizer + +torch.set_default_device('cuda') +model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", trust_remote_code=True, torch_dtype="auto") +tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True, torch_dtype="auto") +inputs = tokenizer('''```python +def print_prime(n): + """ + Print all primes between 1 and n + """''', return_tensors="pt", return_attention_mask=False) + +eos_token_id = tokenizer.encode("```")[0] +outputs = model.generate(**inputs, max_length=500) +text = tokenizer.batch_decode(outputs)[0] +print(text) +``` + ### Citation ```bib @article{textbooks2,