Delete configuration_mixformer_sequential.py
This commit is contained in:
parent
271c3397ab
commit
8e9ebfb9bf
@ -1,61 +0,0 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
class MixFormerSequentialConfig(PretrainedConfig):
|
||||
"""MixFormer (sequential for DeepSpeed) configuration."""
|
||||
|
||||
model_type = "mixformer-sequential"
|
||||
|
||||
attribute_map = {
|
||||
"max_position_embeddings": "n_positions",
|
||||
"hidden_size": "n_embd",
|
||||
"num_attention_heads": "n_head",
|
||||
"num_hidden_layers": "n_layer",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 50304,
|
||||
n_positions: int = 2048,
|
||||
n_embd: int = 1024,
|
||||
n_layer: int = 20,
|
||||
n_inner: Optional[int] = None,
|
||||
n_head: int = 16,
|
||||
n_head_kv: Optional[int] = None,
|
||||
rotary_dim: Optional[int] = 32,
|
||||
activation_function: Optional[str] = "gelu_new",
|
||||
flash_rotary: bool = False,
|
||||
fused_dense: bool = False,
|
||||
attn_pdrop: float = 0.0,
|
||||
embd_pdrop: float = 0.0,
|
||||
resid_pdrop: float = 0.0,
|
||||
layer_norm_epsilon: float = 1e-5,
|
||||
initializer_range: float = 0.02,
|
||||
tie_word_embeddings: bool = False,
|
||||
pad_vocab_size_multiple: int = 64,
|
||||
**kwargs
|
||||
) -> None:
|
||||
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
||||
self.n_positions = n_positions
|
||||
self.n_embd = n_embd
|
||||
self.n_layer = n_layer
|
||||
self.n_inner = n_inner
|
||||
self.n_head = n_head
|
||||
self.n_head_kv = n_head_kv
|
||||
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
||||
self.activation_function = activation_function
|
||||
self.flash_rotary = flash_rotary
|
||||
self.fused_dense = fused_dense
|
||||
self.attn_pdrop = attn_pdrop
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
|
||||
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
||||
Loading…
Reference in New Issue
Block a user