Upload modeling_phi.py
This commit is contained in:
parent
3a705a2d6b
commit
914c8fb3c6
@ -358,7 +358,9 @@ class PhiAttention(nn.Module):
|
|||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
attn_weights = torch.matmul(
|
||||||
|
query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
|
||||||
|
) / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -374,7 +376,7 @@ class PhiAttention(nn.Module):
|
|||||||
attn_weights = attn_weights + attention_mask
|
attn_weights = attn_weights + attention_mask
|
||||||
|
|
||||||
# upcast attention to fp32
|
# upcast attention to fp32
|
||||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
||||||
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
||||||
|
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
@ -483,8 +485,10 @@ class PhiFlashAttention2(PhiAttention):
|
|||||||
# in fp32.
|
# in fp32.
|
||||||
|
|
||||||
if query_states.dtype == torch.float32:
|
if query_states.dtype == torch.float32:
|
||||||
|
if torch.is_autocast_enabled():
|
||||||
|
target_dtype = torch.get_autocast_gpu_dtype()
|
||||||
# Handle the case where the model is quantized
|
# Handle the case where the model is quantized
|
||||||
if hasattr(self.config, "_pre_quantization_dtype"):
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||||||
target_dtype = self.config._pre_quantization_dtype
|
target_dtype = self.config._pre_quantization_dtype
|
||||||
else:
|
else:
|
||||||
target_dtype = self.q_proj.weight.dtype
|
target_dtype = self.q_proj.weight.dtype
|
||||||
@ -1093,7 +1097,7 @@ class PhiForCausalLM(PhiPreTrainedModel):
|
|||||||
|
|
||||||
# Keep only the unprocessed tokens:
|
# Keep only the unprocessed tokens:
|
||||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||||
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||||
# input)
|
# input)
|
||||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||||||
@ -1225,9 +1229,10 @@ class PhiForSequenceClassification(PhiPreTrainedModel):
|
|||||||
sequence_lengths = -1
|
sequence_lengths = -1
|
||||||
else:
|
else:
|
||||||
if input_ids is not None:
|
if input_ids is not None:
|
||||||
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
||||||
logits.device
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
||||||
)
|
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
||||||
|
sequence_lengths = sequence_lengths.to(logits.device)
|
||||||
else:
|
else:
|
||||||
sequence_lengths = -1
|
sequence_lengths = -1
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user