diff --git a/modeling_mixformer_sequential.py b/modeling_mixformer_sequential.py deleted file mode 100644 index b4efc53..0000000 --- a/modeling_mixformer_sequential.py +++ /dev/null @@ -1,855 +0,0 @@ -# Copyright (c) Microsoft Corporation. -# Licensed under the MIT license. -# -# BSD 3-Clause License -# -# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu. -# All rights reserved. -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions are met: -# -# * Redistributions of source code must retain the above copyright notice, this -# list of conditions and the following disclaimer. -# -# * Redistributions in binary form must reproduce the above copyright notice, -# this list of conditions and the following disclaimer in the documentation -# and/or other materials provided with the distribution. -# -# * Neither the name of the copyright holder nor the names of its -# contributors may be used to endorse or promote products derived from -# this software without specific prior written permission. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -from __future__ import annotations - -import math -from typing import Any, Dict, Optional, Tuple, Union -from dataclasses import dataclass, field - -import torch -import torch.nn as nn - -from einops import rearrange, repeat -from transformers.activations import ACT2FN -from transformers import PretrainedConfig, PreTrainedModel -from transformers.modeling_outputs import CausalLMOutputWithPast - -from .configuration_mixformer_sequential import MixFormerSequentialConfig - - -try: - from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding - from flash_attn.ops.fused_dense import FusedDense -except: - FlashRotaryEmbedding = None - FusedDense = None - - -@dataclass -class InferenceParams: - """Inference parameters passed to model to efficiently calculate - and store context during inference. - - Reference: - https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py. - - Args: - max_seqlen: Maximum sequence length. - max_batch_size: Maximum batch size. - seqlen_offset: Sequence length offset. - batch_size_offset: Batch size offset. - key_value_memory_dict: Key value memory dictionary. - lengths_per_sample: Lengths per sample. - - """ - - max_seqlen: int = field(metadata={"help": "Maximum sequence length."}) - - max_batch_size: int = field(metadata={"help": "Maximum batch size."}) - - seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."}) - - batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."}) - - key_value_memory_dict: Dict[str, Any] = field( - default_factory=dict, metadata={"help": "Key value memory dictionary."} - ) - - lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."}) - - -class Embedding(nn.Module): - """Token embedding with dropout.""" - - def __init__(self, config: PretrainedConfig) -> None: - super().__init__() - - self.wte = nn.Embedding(config.vocab_size, config.n_embd) - self.drop = nn.Dropout(config.embd_pdrop) - - def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: - input_shape = input_ids.size() - input_ids = input_ids.view(-1, input_shape[-1]) - - hidden_states = self.wte(input_ids) - hidden_states = self.drop(hidden_states) - - return hidden_states - - -def _apply_rotary_emb( - x: torch.FloatTensor, - cos: torch.FloatTensor, - sin: torch.FloatTensor, -) -> torch.FloatTensor: - _, seqlen, _, head_dim = x.shape - rotary_seqlen, rotary_dim = cos.shape - rotary_dim *= 2 - - assert rotary_dim <= head_dim - assert seqlen <= rotary_seqlen - assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2) - - x_rot = x[:, :, :, :rotary_dim] - x_pass = x[:, :, :, rotary_dim:] - - x1, x2 = x_rot.chunk(2, dim=-1) - c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") - x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]] - - x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype) - - return torch.cat([x_rot, x_pass], axis=-1) - - -def _apply_rotary_emb_kv( - kv: torch.FloatTensor, - cos: torch.FloatTensor, - sin: torch.FloatTensor, - cos_k: Optional[torch.FloatTensor] = None, - sin_k: Optional[torch.FloatTensor] = None, -) -> torch.FloatTensor: - _, seqlen, two, _, head_dim = kv.shape - assert two == 2 - - rotary_seqlen, rotary_dim = cos.shape - rotary_dim *= 2 - assert rotary_dim <= head_dim - assert seqlen <= rotary_seqlen - assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2) - - k_rot = kv[:, :, 0, :, :rotary_dim] - k_pass = kv[:, :, 0, :, rotary_dim:] - - k1, k2 = k_rot.chunk(2, dim=-1) - c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") - k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]] - - k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype) - - return torch.cat( - [ - torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), - kv[:, :, 1:2, :, :], - ], - axis=2, - ) - - -def _apply_rotary_emb_qkv( - qkv: torch.FloatTensor, - cos: torch.FloatTensor, - sin: torch.FloatTensor, - cos_k: Optional[torch.FloatTensor] = None, - sin_k: Optional[torch.FloatTensor] = None, -) -> torch.FloatTensor: - _, seqlen, three, _, head_dim = qkv.shape - assert three == 3 - - rotary_seqlen, rotary_dim = cos.shape - rotary_dim *= 2 - assert rotary_dim <= head_dim - assert seqlen <= rotary_seqlen - assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2) - - q_rot = qkv[:, :, 0, :, :rotary_dim] - q_pass = qkv[:, :, 0, :, rotary_dim:] - - k_rot = qkv[:, :, 1, :, :rotary_dim] - k_pass = qkv[:, :, 1, :, rotary_dim:] - - q1, q2 = q_rot.chunk(2, dim=-1) - k1, k2 = k_rot.chunk(2, dim=-1) - c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") - q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]] - - q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype) - k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype) - - return torch.cat( - [ - torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2), - torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), - qkv[:, :, 2:3, :, :], - ], - axis=2, - ) - - -class RotaryEmbedding(nn.Module): - """Rotary positional embedding (RoPE). - - Reference: - RoFormer: Enhanced Transformer with Rotary Position Embedding. - https://arxiv.org/pdf/2104.09864.pdf. - - """ - - def __init__( - self, - dim: int, - base: int = 10000, - scale_base: Optional[float] = None, - pos_idx_in_fp32: bool = True, - device: Optional[str] = None, - **kwargs, - ) -> None: - super().__init__() - - if scale_base is not None: - raise NotImplementedError - - self.dim = dim - self.base = float(base) - self.scale_base = scale_base - self.pos_idx_in_fp32 = pos_idx_in_fp32 - self.device = device - - # Generate and save the inverse frequency buffer (non-trainable) - inv_freq = self._compute_inv_freq(device) - self.register_buffer("inv_freq", inv_freq, persistent=False) - - # Generate and save the scale buffer (non-trainable) - scale = ( - (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) - if scale_base is not None - else None - ) - self.register_buffer("scale", scale, persistent=False) - - self._seq_len_cached = 0 - self._cos_cached = None - self._sin_cached = None - self._cos_k_cached = None - self._sin_k_cached = None - - def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor: - return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) - - def _update_cos_sin_cache( - self, seqlen: int, device: Optional[str] = None, dtype: Optional[torch.dtype] = None - ) -> None: - # Reset the tables if sequence length has been chaned, if we are on a - # new device or if we are switching from inference mode to training - if ( - seqlen > self._seq_len_cached - or self._cos_cached is None - or self._cos_cached.device != device - or self._cos_cached.dtype != dtype - or (self.training and self._cos_cached.is_inference()) - ): - self._seq_len_cached = seqlen - - # fp32 is preferred since the output of `torch.arange` can be quite large - # and bf16 would lose a lot of precision - if self.pos_idx_in_fp32: - t = torch.arange(seqlen, device=device, dtype=torch.float32) - if self.inv_freq.dtype != torch.float32: - inv_freq = self._compute_inv_freq(device=device) - else: - inv_freq = self.inv_freq - else: - t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) - inv_freq = self.inv_freq - - # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP - freqs = torch.outer(t, inv_freq) - if self.scale is None: - self._cos_cached = torch.cos(freqs).to(dtype) - self._sin_cached = torch.sin(freqs).to(dtype) - else: - power = ( - torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2 - ) / self.scale_base - scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") - - # Force the scale multiplication to happen in fp32 - self._cos_cached = (torch.cos(freqs) * scale).to(dtype) - self._sin_cached = (torch.sin(freqs) * scale).to(dtype) - self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) - self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) - - def forward( - self, - qkv: torch.Tensor, - kv: Optional[torch.Tensor] = None, - seqlen_offset: int = 0, - max_seqlen: Optional[int] = None, - ) -> Tuple[torch.Tensor, torch.Tensor]: - seqlen = qkv.shape[1] - - if max_seqlen is not None: - self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype) - else: - self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype) - - if kv is None: - return _apply_rotary_emb_qkv(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:]) - else: - q = _apply_rotary_emb(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:]) - kv = _apply_rotary_emb_kv(kv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:]) - - return q, kv - - -class MLP(nn.Module): - """Multi-Layer Perceptron. - - Reference: - Attention Is All You Need. - https://arxiv.org/pdf/1706.03762.pdf. - - """ - - def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None: - super().__init__() - - act_fn = config.activation_function if act_fn is None else act_fn - assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}." - - n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner - n_inner = n_inner if n_inner is not None else 4 * config.n_embd - - self.fc1 = nn.Linear(config.n_embd, n_inner) - self.fc2 = nn.Linear(n_inner, config.n_embd) - self.act = ACT2FN[act_fn] - - def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: - hidden_states = self.fc1(hidden_states) - hidden_states = self.act(hidden_states) - hidden_states = self.fc2(hidden_states) - - return hidden_states - - -class SelfAttention(nn.Module): - """Self-attention layer (compatible with PyTorch). - - Reference: - https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. - - """ - - def __init__( - self, - causal: bool = True, - softmax_scale: Optional[float] = None, - attention_dropout: float = 0.0, - ) -> None: - super().__init__() - - self.causal = causal - self.softmax_scale = softmax_scale - self.drop = nn.Dropout(attention_dropout) - - def forward( - self, - qkv: torch.FloatTensor, - causal: bool = None, - attention_mask: Optional[torch.BoolTensor] = None, - **kwargs, - ) -> torch.FloatTensor: - batch_size, seqlen = qkv.shape[0], qkv.shape[1] - q, k, v = qkv.unbind(dim=2) - - causal = self.causal if causal is None else causal - softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) - - scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) - - if attention_mask is not None: - padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device) - padding_mask.masked_fill_(attention_mask, 0.0) - - scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") - - if causal: - causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) - scores = scores + causal_mask.to(dtype=scores.dtype) - - attention = torch.softmax(scores, dim=-1, dtype=v.dtype) - attention = self.drop(attention) - - output = torch.einsum("bhts,bshd->bthd", attention, v) - - return output - - -class CrossAttention(nn.Module): - """Cross-attention layer (compatible with PyTorch). - - Reference: - https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. - - """ - - def __init__( - self, - causal: bool = True, - softmax_scale: Optional[float] = None, - attention_dropout: float = 0.0, - ) -> None: - super().__init__() - - self.causal = causal - self.softmax_scale = softmax_scale - self.drop = nn.Dropout(attention_dropout) - - def forward( - self, - q: torch.FloatTensor, - kv: torch.FloatTensor, - causal: bool = None, - attention_mask: Optional[torch.BoolTensor] = None, - **kwargs, - ) -> torch.FloatTensor: - batch_size, seqlen_q = q.shape[0], q.shape[1] - seqlen_k = kv.shape[1] - assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3] - - if kv.shape[3] != q.shape[2]: - kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3]) - k, v = kv.unbind(dim=2) - - causal = self.causal if causal is None else causal - softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) - - scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) - - if attention_mask is not None: - padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device) - padding_mask.masked_fill_(attention_mask, 0.0) - - scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") - - if causal: - rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1") - cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long) - causal_mask = cols > rows + seqlen_k - seqlen_q - - scores = scores.masked_fill(causal_mask, -10000.0) - - attention = torch.softmax(scores, dim=-1, dtype=v.dtype) - attention = self.drop(attention) - - output = torch.einsum("bhts,bshd->bthd", attention, v) - - return output - - -def _find_mha_dims( - config: PretrainedConfig, - n_head: Optional[int] = None, - n_head_kv: Optional[int] = None, - head_dim: Optional[int] = None, -) -> Tuple[int, int]: - assert all( - hasattr(config, attr) for attr in ["n_embd", "n_head"] - ), "`config` must have `n_embd` and `n_head` attributes." - - if head_dim is None: - assert ( - config.n_embd % config.n_head == 0 - ), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})." - - if n_head is None and head_dim is None: - head_dim = config.n_embd // config.n_head - n_head = config.n_head - elif n_head is None or head_dim is None: - raise ValueError("`n_head` and `head_dim` must be both specified or `None`.") - - if n_head_kv is None: - n_head_kv = getattr(config, "n_head_kv", None) or n_head - assert n_head % n_head_kv == 0, "`n_head` must be divisible by `n_head_kv`." - - return n_head, n_head_kv, head_dim - - -def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor: - num_heads, head_dim = kv.shape[-2:] - - if layer_idx not in inference_params.key_value_memory_dict: - kv_cache = torch.empty( - inference_params.max_batch_size, - inference_params.max_seqlen, - 2, - num_heads, - head_dim, - dtype=kv.dtype, - device=kv.device, - ) - inference_params.key_value_memory_dict[layer_idx] = kv_cache - else: - kv_cache = inference_params.key_value_memory_dict[layer_idx] - - batch_start = inference_params.batch_size_offset - batch_end = batch_start + kv.shape[0] - assert batch_end <= kv_cache.shape[0] - - sequence_start = inference_params.seqlen_offset - sequence_end = sequence_start + kv.shape[1] - assert sequence_end <= kv_cache.shape[1] - - assert kv_cache is not None - kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv - kv = kv_cache[batch_start:batch_end, :sequence_end, ...] - - return kv - - -class MHA(nn.Module): - """Multi-head attention layer.""" - - def __init__( - self, - config: PretrainedConfig, - dtype: Optional[torch.dtype] = None, - device: Optional[str] = None, - rotary_dim: Optional[int] = None, - rotary_emb_scale_base: Optional[float] = None, - n_head: Optional[int] = None, - n_head_kv: Optional[int] = None, - head_dim: Optional[int] = None, - bias: bool = True, - causal: bool = True, - softmax_scale: Optional[float] = None, - layer_idx: Optional[int] = None, - return_residual: bool = False, - checkpointing: bool = False, - ) -> None: - super().__init__() - - # Rotary embedding - self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0) - if self.rotary_emb_dim > 0: - rotary_kwargs = {"device": device} - if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0: - rotary_kwargs["scale_base"] = rotary_emb_scale_base - - rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding - if rotary_cls is None: - rotary_cls = RotaryEmbedding - self.rotary_emb = rotary_cls(self.rotary_emb_dim, **rotary_kwargs) - - # MLP - self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim) - op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv) - hidden_size = config.n_embd - - linear_cls = FusedDense if config.fused_dense else nn.Linear - if linear_cls is None: - linear_cls = nn.Linear - - self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype) - self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype) - - # Attention - self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop) - self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop) - - self.layer_idx = layer_idx - self.return_residual = return_residual - self.checkpointing = checkpointing - - def _forward_self_attn( - self, x: torch.FloatTensor, attention_mask: Optional[torch.BoolTensor] - ) -> torch.FloatTensor: - qkv = self.Wqkv(x) - qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim) - - if self.rotary_emb_dim > 0: - qkv = self.rotary_emb(qkv) - - if self.checkpointing: - return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, attention_mask=attention_mask) - - return self.inner_attn(qkv, attention_mask=attention_mask) - - def _forward_cross_attn( - self, - x: torch.FloatTensor, - past_key_values: Optional[InferenceParams], - attention_mask: Optional[torch.BoolTensor], - ) -> torch.FloatTensor: - qkv = self.Wqkv(x) - - q = qkv[..., : self.n_head * self.head_dim] - q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) - - kv = qkv[..., self.n_head * self.head_dim :] - kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) - - seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0 - causal = None if seqlen_offset == 0 else False - if self.rotary_emb_dim > 0: - q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset) - - if past_key_values is not None: - kv = _update_kv_cache(kv, past_key_values, self.layer_idx) - - if self.checkpointing: - return torch.utils.checkpoint.checkpoint( - self.inner_cross_attn, q, kv, attention_mask=attention_mask, causal=causal - ) - - return self.inner_cross_attn(q, kv, attention_mask=attention_mask, causal=causal) - - def forward( - self, - x: torch.FloatTensor, - past_key_values: Optional[InferenceParams] = None, - attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, - **kwargs, - ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: - if attention_mask is not None and torch.any(~attention_mask.bool()): - attention_mask = attention_mask.bool() - else: - attention_mask = None - - # MHA - if self.n_head == self.n_head_kv: - if past_key_values is None: - # If `past_key_values` are not supplied, we run self-attention - attn_output = self._forward_self_attn(x, attention_mask) - else: - # If `past_key_values` are supplied, it means that we might have cached values and - # could take advantage of cross-attention - attn_output = self._forward_cross_attn(x, past_key_values, attention_mask) - # MQA / GQA - else: - # Regardless of `past_key_values` being supplied or not, it always use cross-attention - # because `q` and `kv` lengths might be different - attn_output = self._forward_cross_attn(x, past_key_values, attention_mask) - - output = rearrange(attn_output, "... h d -> ... (h d)") - output = self.out_proj(output) - - return output if not self.return_residual else (output, x) - - -class ParallelBlock(nn.Module): - """Parallel block. - - This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen). - - """ - - def __init__( - self, - config: PretrainedConfig, - block_idx: Optional[int] = None, - ) -> None: - super().__init__() - - self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) - self.resid_dropout = nn.Dropout(config.resid_pdrop) - self.block_idx = block_idx - - self.mixer = MHA(config, layer_idx=block_idx) - self.mlp = MLP(config) - - def forward( - self, - hidden_states: torch.FloatTensor, - past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, - attention_mask: Optional[torch.BoolTensor] = None, - **kwargs, - ) -> torch.FloatTensor: - residual = hidden_states - hidden_states = self.ln(hidden_states) - - attn_outputs = self.mixer(hidden_states, past_key_values=past_key_values, attention_mask=attention_mask) - if isinstance(attn_outputs, tuple): - attn_outputs = attn_outputs[0] - - attn_outputs = self.resid_dropout(attn_outputs) - feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) - - hidden_states = attn_outputs + feed_forward_hidden_states + residual - - return hidden_states - - -class CausalLMHead(nn.Module): - """Causal Language Modeling head. - - Reference: - Improving Language Understanding by Generative Pre-Training. - https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. - - """ - - def __init__(self, config: PretrainedConfig) -> None: - super().__init__() - - self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) - self.linear = nn.Linear(config.n_embd, config.vocab_size) - - def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: - hidden_states = self.ln(hidden_states) - logits = self.linear(hidden_states).to(torch.float32) - - return logits - - -class CausalLMLoss(nn.Module): - """Causal Language Modeling loss. - - Reference: - Improving Language Understanding by Generative Pre-Training. - https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. - - """ - - def __init__(self, shift_labels: bool = True) -> None: - super().__init__() - - self.shift_labels = shift_labels - self.loss_fct = nn.CrossEntropyLoss() - - def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor: - if self.shift_labels: - logits = logits[..., :-1, :].contiguous() - labels = labels[..., 1:].contiguous() - - loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) - - return loss - - -class MixFormerSequentialPreTrainedModel(PreTrainedModel): - """MixFormer (sequential for DeepSpeed) pre-trained model.""" - - config_class = MixFormerSequentialConfig - base_model_prefix = "transformer" - supports_gradient_checkpointing = True - - def __init__(self, *inputs, **kwargs) -> None: - super().__init__(*inputs, **kwargs) - - def _init_weights(self, module: nn.Module) -> None: - if isinstance(module, (nn.Linear,)): - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - elif isinstance(module, nn.LayerNorm): - if module.bias is not None: - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def prepare_inputs_for_generation( - self, - input_ids: torch.LongTensor, - past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, - attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, - **kwargs, - ) -> Dict[str, Any]: - if past_key_values is None or not (isinstance(past_key_values, InferenceParams)): - past_key_values = InferenceParams( - max_seqlen=self.config.n_positions, - max_batch_size=input_ids.shape[0], - seqlen_offset=0, - batch_size_offset=0, - key_value_memory_dict={}, - lengths_per_sample=None, - ) - else: - # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids` - past_key_values.seqlen_offset = len(input_ids[0]) - 1 - input_ids = input_ids[:, -1].unsqueeze(-1) - - return { - "input_ids": input_ids, - "past_key_values": past_key_values, - "attention_mask": attention_mask, - } - - def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False) -> None: - if isinstance(module, MixFormerSequentialPreTrainedModel): - module.gradient_checkpointing = value - - -class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel): - """MixFormer (sequential for DeepSpeed) for Causal Language Modeling.""" - - _keys_to_ignore_on_load_missing = [""] - _keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] - _no_split_modules = ["ParallelBlock"] - - def __init__(self, config: MixFormerSequentialConfig) -> None: - super().__init__(config) - - modules = [Embedding(config)] - modules += [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)] - modules.append(CausalLMHead(config)) - - self.layers = nn.Sequential(*modules) - self.loss = CausalLMLoss() - - self.post_init() - - def get_input_embeddings(self) -> nn.Embedding: - return self.layers[0].wte - - def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: - self.layers[0].wte = new_embeddings - - def get_output_embeddings(self) -> nn.Linear: - return self.layers[-1].linear - - def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: - self.layers[-1].linear = new_embeddings - - def forward( - self, - input_ids: torch.LongTensor, - past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, - attention_mask: Optional[torch.BoolTensor] = None, - labels: Optional[torch.LongTensor] = None, - **kwargs, - ) -> CausalLMOutputWithPast: - hidden_layer = self.layers[0](input_ids) - for module in self.layers[1:-1]: - hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask) - lm_logits = self.layers[-1](hidden_layer) - - loss = None - if labels is not None: - loss = self.loss(lm_logits, labels) - - return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)