chore(root): Updates files to internal transformers implementation.
This commit is contained in:
parent
24f9ea14df
commit
d3ba318b78
37
config.json
37
config.json
@ -1,31 +1,30 @@
|
|||||||
{
|
{
|
||||||
"_name_or_path": "microsoft/phi-1_5",
|
"_name_or_path": "microsoft/phi-1_5",
|
||||||
"activation_function": "gelu_new",
|
|
||||||
"architectures": [
|
"architectures": [
|
||||||
"PhiForCausalLM"
|
"PhiForCausalLM"
|
||||||
],
|
],
|
||||||
"attn_pdrop": 0.0,
|
"attention_dropout": 0.0,
|
||||||
"auto_map": {
|
"bos_token_id": null,
|
||||||
"AutoConfig": "configuration_phi.PhiConfig",
|
|
||||||
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
|
|
||||||
},
|
|
||||||
"embd_pdrop": 0.0,
|
"embd_pdrop": 0.0,
|
||||||
"flash_attn": false,
|
"eos_token_id": null,
|
||||||
"flash_rotary": false,
|
"hidden_act": "gelu_new",
|
||||||
"fused_dense": false,
|
"hidden_size": 2048,
|
||||||
"initializer_range": 0.02,
|
"initializer_range": 0.02,
|
||||||
"layer_norm_epsilon": 1e-05,
|
"intermediate_size": 8192,
|
||||||
"model_type": "phi-msft",
|
"layer_norm_eps": 1e-05,
|
||||||
"n_embd": 2048,
|
"max_position_embeddings": 2048,
|
||||||
"n_head": 32,
|
"model_type": "phi",
|
||||||
"n_head_kv": null,
|
"num_attention_heads": 32,
|
||||||
"n_inner": null,
|
"num_hidden_layers": 24,
|
||||||
"n_layer": 24,
|
"num_key_value_heads": 32,
|
||||||
"n_positions": 2048,
|
"partial_rotary_factor": 0.5,
|
||||||
|
"qk_layernorm": false,
|
||||||
"resid_pdrop": 0.0,
|
"resid_pdrop": 0.0,
|
||||||
"rotary_dim": 32,
|
"rope_scaling": null,
|
||||||
|
"rope_theta": 10000.0,
|
||||||
"tie_word_embeddings": false,
|
"tie_word_embeddings": false,
|
||||||
"torch_dtype": "float16",
|
"torch_dtype": "float16",
|
||||||
"transformers_version": "4.34.1",
|
"transformers_version": "4.37.0.dev0",
|
||||||
|
"use_cache": true,
|
||||||
"vocab_size": 51200
|
"vocab_size": 51200
|
||||||
}
|
}
|
||||||
|
|||||||
@ -1,62 +1,193 @@
|
|||||||
# Copyright (c) Microsoft Corporation.
|
# coding=utf-8
|
||||||
# Licensed under the MIT license.
|
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
import math
|
""" Phi model configuration"""
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
from transformers import PretrainedConfig
|
|
||||||
|
from transformers.configuration_utils import PretrainedConfig
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||||
|
"microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
class PhiConfig(PretrainedConfig):
|
class PhiConfig(PretrainedConfig):
|
||||||
"""Phi configuration."""
|
r"""
|
||||||
|
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
|
||||||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||||
|
defaults will yield a similar configuration to that of the Phi
|
||||||
|
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
|
||||||
|
|
||||||
model_type = "phi-msft"
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||||
attribute_map = {
|
documentation from [`PretrainedConfig`] for more information.
|
||||||
"max_position_embeddings": "n_positions",
|
|
||||||
"hidden_size": "n_embd",
|
Args:
|
||||||
"num_attention_heads": "n_head",
|
vocab_size (`int`, *optional*, defaults to 51200):
|
||||||
"num_hidden_layers": "n_layer",
|
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
|
||||||
}
|
`inputs_ids` passed when calling [`PhiModel`].
|
||||||
|
hidden_size (`int`, *optional*, defaults to 2048):
|
||||||
|
Dimension of the hidden representations.
|
||||||
|
intermediate_size (`int`, *optional*, defaults to 8192):
|
||||||
|
Dimension of the MLP representations.
|
||||||
|
num_hidden_layers (`int`, *optional*, defaults to 24):
|
||||||
|
Number of hidden layers in the Transformer decoder.
|
||||||
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||||
|
Number of attention heads for each attention layer in the Transformer decoder.
|
||||||
|
num_key_value_heads (`int`, *optional*):
|
||||||
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||||
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||||
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||||
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||||
|
by meanpooling all the original heads within that group. For more details checkout [this
|
||||||
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||||
|
`num_attention_heads`.
|
||||||
|
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
||||||
|
Dropout probability for mlp outputs.
|
||||||
|
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
||||||
|
The dropout ratio for the embeddings.
|
||||||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||||
|
The dropout ratio after computing the attention scores.
|
||||||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
||||||
|
The non-linear activation function (function or string) in the decoder.
|
||||||
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||||
|
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
||||||
|
tokens.
|
||||||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||||||
|
The epsilon used by the rms normalization layers.
|
||||||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||||
|
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
||||||
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||||
|
Whether to tie weight embeddings
|
||||||
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||||
|
The base period of the RoPE embeddings.
|
||||||
|
rope_scaling (`Dict`, *optional*):
|
||||||
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||||||
|
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
||||||
|
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||||||
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
||||||
|
these scaling strategies behave:
|
||||||
|
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
||||||
|
is an experimental feature, subject to breaking API changes in future versions.
|
||||||
|
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
||||||
|
Percentage of the query and keys which will have rotary embedding.
|
||||||
|
qk_layernorm (`bool`, *optional*, defaults to `False`):
|
||||||
|
Whether or not to normalize the Queries and Keys after projecting the hidden states.
|
||||||
|
bos_token_id (`int`, *optional*, defaults to 1):
|
||||||
|
Denotes beginning of sequences token id.
|
||||||
|
eos_token_id (`int`, *optional*, defaults to 2):
|
||||||
|
Denotes end of sequences token id.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> from transformers import PhiModel, PhiConfig
|
||||||
|
|
||||||
|
>>> # Initializing a Phi-1 style configuration
|
||||||
|
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
|
||||||
|
|
||||||
|
>>> # Initializing a model from the configuration
|
||||||
|
>>> model = PhiModel(configuration)
|
||||||
|
|
||||||
|
>>> # Accessing the model configuration
|
||||||
|
>>> configuration = model.config
|
||||||
|
```"""
|
||||||
|
|
||||||
|
model_type = "phi"
|
||||||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
vocab_size: int = 50304,
|
vocab_size=51200,
|
||||||
n_positions: int = 2048,
|
hidden_size=2048,
|
||||||
n_embd: int = 1024,
|
intermediate_size=8192,
|
||||||
n_layer: int = 20,
|
num_hidden_layers=24,
|
||||||
n_inner: Optional[int] = None,
|
num_attention_heads=32,
|
||||||
n_head: int = 16,
|
num_key_value_heads=None,
|
||||||
n_head_kv: Optional[int] = None,
|
resid_pdrop=0.0,
|
||||||
rotary_dim: Optional[int] = 32,
|
embd_pdrop=0.0,
|
||||||
activation_function: Optional[str] = "gelu_new",
|
attention_dropout=0.0,
|
||||||
flash_attn: bool = False,
|
hidden_act="gelu_new",
|
||||||
flash_rotary: bool = False,
|
max_position_embeddings=2048,
|
||||||
fused_dense: bool = False,
|
initializer_range=0.02,
|
||||||
attn_pdrop: float = 0.0,
|
layer_norm_eps=1e-5,
|
||||||
embd_pdrop: float = 0.0,
|
use_cache=True,
|
||||||
resid_pdrop: float = 0.0,
|
tie_word_embeddings=False,
|
||||||
layer_norm_epsilon: float = 1e-5,
|
rope_theta=10000.0,
|
||||||
initializer_range: float = 0.02,
|
rope_scaling=None,
|
||||||
tie_word_embeddings: bool = False,
|
partial_rotary_factor=0.5,
|
||||||
pad_vocab_size_multiple: int = 64,
|
qk_layernorm=False,
|
||||||
**kwargs
|
bos_token_id=1,
|
||||||
) -> None:
|
eos_token_id=2,
|
||||||
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
**kwargs,
|
||||||
self.n_positions = n_positions
|
):
|
||||||
self.n_embd = n_embd
|
self.vocab_size = vocab_size
|
||||||
self.n_layer = n_layer
|
self.hidden_size = hidden_size
|
||||||
self.n_inner = n_inner
|
self.intermediate_size = intermediate_size
|
||||||
self.n_head = n_head
|
self.num_hidden_layers = num_hidden_layers
|
||||||
self.n_head_kv = n_head_kv
|
self.num_attention_heads = num_attention_heads
|
||||||
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
|
||||||
self.activation_function = activation_function
|
|
||||||
self.flash_attn = flash_attn
|
|
||||||
self.flash_rotary = flash_rotary
|
|
||||||
self.fused_dense = fused_dense
|
|
||||||
self.attn_pdrop = attn_pdrop
|
|
||||||
self.embd_pdrop = embd_pdrop
|
|
||||||
self.resid_pdrop = resid_pdrop
|
|
||||||
self.layer_norm_epsilon = layer_norm_epsilon
|
|
||||||
self.initializer_range = initializer_range
|
|
||||||
|
|
||||||
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
if num_key_value_heads is None:
|
||||||
|
num_key_value_heads = num_attention_heads
|
||||||
|
|
||||||
|
self.num_key_value_heads = num_key_value_heads
|
||||||
|
self.resid_pdrop = resid_pdrop
|
||||||
|
self.embd_pdrop = embd_pdrop
|
||||||
|
self.attention_dropout = attention_dropout
|
||||||
|
self.hidden_act = hidden_act
|
||||||
|
self.max_position_embeddings = max_position_embeddings
|
||||||
|
self.initializer_range = initializer_range
|
||||||
|
self.layer_norm_eps = layer_norm_eps
|
||||||
|
self.use_cache = use_cache
|
||||||
|
self.rope_theta = rope_theta
|
||||||
|
self.rope_scaling = rope_scaling
|
||||||
|
self.partial_rotary_factor = partial_rotary_factor
|
||||||
|
self.qk_layernorm = qk_layernorm
|
||||||
|
self._rope_scaling_validation()
|
||||||
|
|
||||||
|
super().__init__(
|
||||||
|
bos_token_id=bos_token_id,
|
||||||
|
eos_token_id=eos_token_id,
|
||||||
|
tie_word_embeddings=tie_word_embeddings,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
||||||
|
def _rope_scaling_validation(self):
|
||||||
|
"""
|
||||||
|
Validate the `rope_scaling` configuration.
|
||||||
|
"""
|
||||||
|
if self.rope_scaling is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||||
|
raise ValueError(
|
||||||
|
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
||||||
|
f"got {self.rope_scaling}"
|
||||||
|
)
|
||||||
|
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||||
|
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||||
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
||||||
|
raise ValueError(
|
||||||
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||||||
|
)
|
||||||
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
||||||
|
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
||||||
|
|||||||
@ -1,4 +1,4 @@
|
|||||||
{
|
{
|
||||||
"_from_model_config": true,
|
"_from_model_config": true,
|
||||||
"transformers_version": "4.32.1"
|
"transformers_version": "4.37.0.dev0"
|
||||||
}
|
}
|
||||||
|
|||||||
2118
modeling_phi.py
2118
modeling_phi.py
File diff suppressed because it is too large
Load Diff
BIN
pytorch_model.bin
(Stored with Git LFS)
BIN
pytorch_model.bin
(Stored with Git LFS)
Binary file not shown.
Loading…
Reference in New Issue
Block a user