This commit is contained in:
Susnato Dhar 2023-11-23 20:14:53 +05:30
parent 5fd430c7bc
commit ff4e06fd98
4 changed files with 1367 additions and 920 deletions

@ -1,31 +1,27 @@
{ {
"_name_or_path": "microsoft/phi-1_5",
"activation_function": "gelu_new",
"architectures": [ "architectures": [
"PhiForCausalLM" "PhiForCausalLM"
], ],
"attn_pdrop": 0.0, "bos_token_id": 1,
"auto_map": { "eos_token_id": 2,
"AutoConfig": "configuration_phi.PhiConfig", "hidden_act": "gelu_new",
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM" "hidden_size": 2048,
},
"embd_pdrop": 0.0,
"flash_attn": false,
"flash_rotary": false,
"fused_dense": false,
"initializer_range": 0.02, "initializer_range": 0.02,
"layer_norm_epsilon": 1e-05, "intermediate_size": 8192,
"max_position_embeddings": 2048,
"model_type": "phi", "model_type": "phi",
"n_embd": 2048, "num_attention_heads": 32,
"n_head": 32, "num_hidden_layers": 24,
"n_head_kv": null, "pretraining_tp": 1,
"n_inner": null,
"n_layer": 24,
"n_positions": 2048,
"resid_pdrop": 0.0, "resid_pdrop": 0.0,
"rotary_dim": 32, "embd_pdrop": 0.0,
"layer_norm_eps": 1e-05,
"rope_scaling": null,
"rope_theta": 10000.0,
"partial_rotary_factor": 0.5,
"qk_layernorm": false,
"tie_word_embeddings": false, "tie_word_embeddings": false,
"torch_dtype": "float16", "transformers_version": "4.34.0.dev0",
"transformers_version": "4.34.1", "use_cache": true,
"vocab_size": 51200 "vocab_size": 51200
} }

@ -1,62 +1,180 @@
# Copyright (c) Microsoft Corporation. # coding=utf-8
# Licensed under the MIT license. # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math """ Phi model configuration"""
from typing import Optional
from transformers import PretrainedConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/phi-1": "https://huggingface.co/microsoft/phi-1/resolve/main/config.json",
"microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json",
}
class PhiConfig(PretrainedConfig): class PhiConfig(PretrainedConfig):
"""Phi configuration.""" r"""
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Phi
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 51200):
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PhiModel`].
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
is an experimental feature, subject to breaking API changes in future versions.
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
Percentage of the query and keys which will have rotary embedding.
qk_layernorm (`bool`, *optional*, defaults to `False`):
Whether or not to normalize the Queries and Keys after projecting the hidden states
bos_token_id (`int`, *optional*, defaults to 1):
Denotes beginning of sequences token id.
eos_token_id (`int`, *optional*, defaults to 2):
Denotes end of sequences token id.
Example:
```python
>>> from transformers import PhiModel, PhiConfig
>>> # Initializing a Phi-1 style configuration
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
>>> # Initializing a model from the configuration
>>> model = PhiModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phi" model_type = "phi"
attribute_map = { keys_to_ignore_at_inference = ["past_key_values"]
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( def __init__(
self, self,
vocab_size: int = 50304, vocab_size=51200,
n_positions: int = 2048, hidden_size=2048,
n_embd: int = 1024, intermediate_size=8192,
n_layer: int = 20, num_hidden_layers=24,
n_inner: Optional[int] = None, num_attention_heads=32,
n_head: int = 16, resid_pdrop=0.0,
n_head_kv: Optional[int] = None, embd_pdrop=0.0,
rotary_dim: Optional[int] = 32, attention_dropout=0.0,
activation_function: Optional[str] = "gelu_new", hidden_act="gelu_new",
flash_attn: bool = False, max_position_embeddings=2048,
flash_rotary: bool = False, initializer_range=0.02,
fused_dense: bool = False, layer_norm_eps=1e-5,
attn_pdrop: float = 0.0, use_cache=True,
embd_pdrop: float = 0.0, tie_word_embeddings=False,
resid_pdrop: float = 0.0, rope_theta=10000.0,
layer_norm_epsilon: float = 1e-5, rope_scaling=None,
initializer_range: float = 0.02, partial_rotary_factor=0.5,
tie_word_embeddings: bool = False, qk_layernorm=False,
pad_vocab_size_multiple: int = 64, bos_token_id=1,
**kwargs eos_token_id=2,
) -> None: **kwargs,
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) ):
self.n_positions = n_positions self.vocab_size = vocab_size
self.n_embd = n_embd self.hidden_size = hidden_size
self.n_layer = n_layer self.intermediate_size = intermediate_size
self.n_inner = n_inner self.num_hidden_layers = num_hidden_layers
self.n_head = n_head self.num_attention_heads = num_attention_heads
self.n_head_kv = n_head_kv
self.rotary_dim = min(rotary_dim, n_embd // n_head)
self.activation_function = activation_function
self.flash_attn = flash_attn
self.flash_rotary = flash_rotary
self.fused_dense = fused_dense
self.attn_pdrop = attn_pdrop
self.embd_pdrop = embd_pdrop
self.resid_pdrop = resid_pdrop self.resid_pdrop = resid_pdrop
self.layer_norm_epsilon = layer_norm_epsilon self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.qk_layernorm = qk_layernorm
self._rope_scaling_validation()
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")

File diff suppressed because it is too large Load Diff

BIN
pytorch_model.bin (Stored with Git LFS)

Binary file not shown.