Compare commits
10 Commits
34a1490e06
...
675aa382d8
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
675aa382d8 | ||
|
|
db561377f8 | ||
|
|
de9f725f6a | ||
|
|
467adac814 | ||
|
|
474b29ef61 | ||
|
|
fa2a356ff2 | ||
|
|
bffd3b29c4 | ||
|
|
349cf8b5e8 | ||
|
|
83b9c52637 | ||
|
|
675e8c1bae |
2
LICENSE
2
LICENSE
@ -1,4 +1,4 @@
|
|||||||
PhyAGI.
|
Microsoft.
|
||||||
Copyright (c) Microsoft Corporation.
|
Copyright (c) Microsoft Corporation.
|
||||||
|
|
||||||
MIT License
|
MIT License
|
||||||
|
|||||||
15
README.md
15
README.md
@ -1,5 +1,4 @@
|
|||||||
---
|
---
|
||||||
inference: false
|
|
||||||
license: mit
|
license: mit
|
||||||
license_link: https://huggingface.co/microsoft/phi-1_5/resolve/main/LICENSE
|
license_link: https://huggingface.co/microsoft/phi-1_5/resolve/main/LICENSE
|
||||||
language:
|
language:
|
||||||
@ -21,13 +20,7 @@ Phi-1.5 can write poems, draft emails, create stories, summarize texts, write Py
|
|||||||
|
|
||||||
## How to Use
|
## How to Use
|
||||||
|
|
||||||
Phi-1.5 has been integrated in the development version (4.37.0.dev) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following:
|
Phi-1.5 has been integrated in the `transformers` version 4.37.0, please ensure that you are using a version equal or higher than it.
|
||||||
|
|
||||||
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
|
|
||||||
|
|
||||||
* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.
|
|
||||||
|
|
||||||
The current `transformers` version can be verified with: `pip list | grep transformers`.
|
|
||||||
|
|
||||||
## Intended Uses
|
## Intended Uses
|
||||||
|
|
||||||
@ -94,8 +87,6 @@ where the model generates the text after the comments.
|
|||||||
|
|
||||||
* Phi-1.5 has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.
|
* Phi-1.5 has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.
|
||||||
|
|
||||||
* If you are using `transformers<4.37.0`, always load the model with `trust_remote_code=True` to prevent side-effects.
|
|
||||||
|
|
||||||
## Sample Code
|
## Sample Code
|
||||||
|
|
||||||
```python
|
```python
|
||||||
@ -104,8 +95,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|||||||
|
|
||||||
torch.set_default_device("cuda")
|
torch.set_default_device("cuda")
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", torch_dtype="auto", trust_remote_code=True)
|
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", torch_dtype="auto")
|
||||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5")
|
||||||
|
|
||||||
inputs = tokenizer('''def print_prime(n):
|
inputs = tokenizer('''def print_prime(n):
|
||||||
"""
|
"""
|
||||||
|
|||||||
@ -3,10 +3,6 @@
|
|||||||
"architectures": [
|
"architectures": [
|
||||||
"PhiForCausalLM"
|
"PhiForCausalLM"
|
||||||
],
|
],
|
||||||
"auto_map": {
|
|
||||||
"AutoConfig": "configuration_phi.PhiConfig",
|
|
||||||
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
|
|
||||||
},
|
|
||||||
"attention_dropout": 0.0,
|
"attention_dropout": 0.0,
|
||||||
"bos_token_id": null,
|
"bos_token_id": null,
|
||||||
"embd_pdrop": 0.0,
|
"embd_pdrop": 0.0,
|
||||||
@ -28,7 +24,7 @@
|
|||||||
"rope_theta": 10000.0,
|
"rope_theta": 10000.0,
|
||||||
"tie_word_embeddings": false,
|
"tie_word_embeddings": false,
|
||||||
"torch_dtype": "float16",
|
"torch_dtype": "float16",
|
||||||
"transformers_version": "4.37.0.dev0",
|
"transformers_version": "4.37.0",
|
||||||
"use_cache": true,
|
"use_cache": true,
|
||||||
"vocab_size": 51200
|
"vocab_size": 51200
|
||||||
}
|
}
|
||||||
|
|||||||
@ -1,193 +0,0 @@
|
|||||||
# coding=utf-8
|
|
||||||
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
""" Phi model configuration"""
|
|
||||||
|
|
||||||
|
|
||||||
from transformers.configuration_utils import PretrainedConfig
|
|
||||||
from transformers.utils import logging
|
|
||||||
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
||||||
"microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json",
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
class PhiConfig(PretrainedConfig):
|
|
||||||
r"""
|
|
||||||
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
|
|
||||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
||||||
defaults will yield a similar configuration to that of the Phi
|
|
||||||
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
|
|
||||||
|
|
||||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
||||||
documentation from [`PretrainedConfig`] for more information.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
vocab_size (`int`, *optional*, defaults to 51200):
|
|
||||||
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
|
|
||||||
`inputs_ids` passed when calling [`PhiModel`].
|
|
||||||
hidden_size (`int`, *optional*, defaults to 2048):
|
|
||||||
Dimension of the hidden representations.
|
|
||||||
intermediate_size (`int`, *optional*, defaults to 8192):
|
|
||||||
Dimension of the MLP representations.
|
|
||||||
num_hidden_layers (`int`, *optional*, defaults to 24):
|
|
||||||
Number of hidden layers in the Transformer decoder.
|
|
||||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
||||||
Number of attention heads for each attention layer in the Transformer decoder.
|
|
||||||
num_key_value_heads (`int`, *optional*):
|
|
||||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
||||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
||||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
||||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
||||||
by meanpooling all the original heads within that group. For more details checkout [this
|
|
||||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
|
||||||
`num_attention_heads`.
|
|
||||||
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
|
||||||
Dropout probability for mlp outputs.
|
|
||||||
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
|
||||||
The dropout ratio for the embeddings.
|
|
||||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
||||||
The dropout ratio after computing the attention scores.
|
|
||||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
|
||||||
The non-linear activation function (function or string) in the decoder.
|
|
||||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
|
||||||
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
|
||||||
tokens.
|
|
||||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
||||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
||||||
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
||||||
The epsilon used by the rms normalization layers.
|
|
||||||
use_cache (`bool`, *optional*, defaults to `True`):
|
|
||||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
||||||
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
|
||||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
||||||
Whether to tie weight embeddings
|
|
||||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
||||||
The base period of the RoPE embeddings.
|
|
||||||
rope_scaling (`Dict`, *optional*):
|
|
||||||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
|
||||||
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
|
||||||
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
|
||||||
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
|
||||||
these scaling strategies behave:
|
|
||||||
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
|
||||||
is an experimental feature, subject to breaking API changes in future versions.
|
|
||||||
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
|
||||||
Percentage of the query and keys which will have rotary embedding.
|
|
||||||
qk_layernorm (`bool`, *optional*, defaults to `False`):
|
|
||||||
Whether or not to normalize the Queries and Keys after projecting the hidden states.
|
|
||||||
bos_token_id (`int`, *optional*, defaults to 1):
|
|
||||||
Denotes beginning of sequences token id.
|
|
||||||
eos_token_id (`int`, *optional*, defaults to 2):
|
|
||||||
Denotes end of sequences token id.
|
|
||||||
|
|
||||||
Example:
|
|
||||||
|
|
||||||
```python
|
|
||||||
>>> from transformers import PhiModel, PhiConfig
|
|
||||||
|
|
||||||
>>> # Initializing a Phi-1 style configuration
|
|
||||||
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
|
|
||||||
|
|
||||||
>>> # Initializing a model from the configuration
|
|
||||||
>>> model = PhiModel(configuration)
|
|
||||||
|
|
||||||
>>> # Accessing the model configuration
|
|
||||||
>>> configuration = model.config
|
|
||||||
```"""
|
|
||||||
|
|
||||||
model_type = "phi"
|
|
||||||
keys_to_ignore_at_inference = ["past_key_values"]
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
vocab_size=51200,
|
|
||||||
hidden_size=2048,
|
|
||||||
intermediate_size=8192,
|
|
||||||
num_hidden_layers=24,
|
|
||||||
num_attention_heads=32,
|
|
||||||
num_key_value_heads=None,
|
|
||||||
resid_pdrop=0.0,
|
|
||||||
embd_pdrop=0.0,
|
|
||||||
attention_dropout=0.0,
|
|
||||||
hidden_act="gelu_new",
|
|
||||||
max_position_embeddings=2048,
|
|
||||||
initializer_range=0.02,
|
|
||||||
layer_norm_eps=1e-5,
|
|
||||||
use_cache=True,
|
|
||||||
tie_word_embeddings=False,
|
|
||||||
rope_theta=10000.0,
|
|
||||||
rope_scaling=None,
|
|
||||||
partial_rotary_factor=0.5,
|
|
||||||
qk_layernorm=False,
|
|
||||||
bos_token_id=1,
|
|
||||||
eos_token_id=2,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
self.vocab_size = vocab_size
|
|
||||||
self.hidden_size = hidden_size
|
|
||||||
self.intermediate_size = intermediate_size
|
|
||||||
self.num_hidden_layers = num_hidden_layers
|
|
||||||
self.num_attention_heads = num_attention_heads
|
|
||||||
|
|
||||||
if num_key_value_heads is None:
|
|
||||||
num_key_value_heads = num_attention_heads
|
|
||||||
|
|
||||||
self.num_key_value_heads = num_key_value_heads
|
|
||||||
self.resid_pdrop = resid_pdrop
|
|
||||||
self.embd_pdrop = embd_pdrop
|
|
||||||
self.attention_dropout = attention_dropout
|
|
||||||
self.hidden_act = hidden_act
|
|
||||||
self.max_position_embeddings = max_position_embeddings
|
|
||||||
self.initializer_range = initializer_range
|
|
||||||
self.layer_norm_eps = layer_norm_eps
|
|
||||||
self.use_cache = use_cache
|
|
||||||
self.rope_theta = rope_theta
|
|
||||||
self.rope_scaling = rope_scaling
|
|
||||||
self.partial_rotary_factor = partial_rotary_factor
|
|
||||||
self.qk_layernorm = qk_layernorm
|
|
||||||
self._rope_scaling_validation()
|
|
||||||
|
|
||||||
super().__init__(
|
|
||||||
bos_token_id=bos_token_id,
|
|
||||||
eos_token_id=eos_token_id,
|
|
||||||
tie_word_embeddings=tie_word_embeddings,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
|
||||||
def _rope_scaling_validation(self):
|
|
||||||
"""
|
|
||||||
Validate the `rope_scaling` configuration.
|
|
||||||
"""
|
|
||||||
if self.rope_scaling is None:
|
|
||||||
return
|
|
||||||
|
|
||||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
|
||||||
raise ValueError(
|
|
||||||
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
|
||||||
f"got {self.rope_scaling}"
|
|
||||||
)
|
|
||||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
|
||||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
|
||||||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
|
||||||
raise ValueError(
|
|
||||||
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
|
||||||
)
|
|
||||||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
|
||||||
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
|
||||||
BIN
model.safetensors
(Stored with Git LFS)
Normal file
BIN
model.safetensors
(Stored with Git LFS)
Normal file
Binary file not shown.
1369
modeling_phi.py
1369
modeling_phi.py
File diff suppressed because it is too large
Load Diff
BIN
pytorch_model.bin
(Stored with Git LFS)
BIN
pytorch_model.bin
(Stored with Git LFS)
Binary file not shown.
Loading…
Reference in New Issue
Block a user