Compare commits
No commits in common. "675aa382d814580b22651a30acb1a585d7c25963" and "34a1490e069dc3ce2ce30c3a37615cbfec39f5a6" have entirely different histories.
675aa382d8
...
34a1490e06
2
LICENSE
2
LICENSE
@ -1,4 +1,4 @@
|
||||
Microsoft.
|
||||
PhyAGI.
|
||||
Copyright (c) Microsoft Corporation.
|
||||
|
||||
MIT License
|
||||
|
||||
15
README.md
15
README.md
@ -1,4 +1,5 @@
|
||||
---
|
||||
inference: false
|
||||
license: mit
|
||||
license_link: https://huggingface.co/microsoft/phi-1_5/resolve/main/LICENSE
|
||||
language:
|
||||
@ -20,7 +21,13 @@ Phi-1.5 can write poems, draft emails, create stories, summarize texts, write Py
|
||||
|
||||
## How to Use
|
||||
|
||||
Phi-1.5 has been integrated in the `transformers` version 4.37.0, please ensure that you are using a version equal or higher than it.
|
||||
Phi-1.5 has been integrated in the development version (4.37.0.dev) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following:
|
||||
|
||||
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
|
||||
|
||||
* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.
|
||||
|
||||
The current `transformers` version can be verified with: `pip list | grep transformers`.
|
||||
|
||||
## Intended Uses
|
||||
|
||||
@ -87,6 +94,8 @@ where the model generates the text after the comments.
|
||||
|
||||
* Phi-1.5 has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.
|
||||
|
||||
* If you are using `transformers<4.37.0`, always load the model with `trust_remote_code=True` to prevent side-effects.
|
||||
|
||||
## Sample Code
|
||||
|
||||
```python
|
||||
@ -95,8 +104,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
torch.set_default_device("cuda")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", torch_dtype="auto")
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5")
|
||||
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", torch_dtype="auto", trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True)
|
||||
|
||||
inputs = tokenizer('''def print_prime(n):
|
||||
"""
|
||||
|
||||
@ -3,6 +3,10 @@
|
||||
"architectures": [
|
||||
"PhiForCausalLM"
|
||||
],
|
||||
"auto_map": {
|
||||
"AutoConfig": "configuration_phi.PhiConfig",
|
||||
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
|
||||
},
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": null,
|
||||
"embd_pdrop": 0.0,
|
||||
@ -24,7 +28,7 @@
|
||||
"rope_theta": 10000.0,
|
||||
"tie_word_embeddings": false,
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.37.0",
|
||||
"transformers_version": "4.37.0.dev0",
|
||||
"use_cache": true,
|
||||
"vocab_size": 51200
|
||||
}
|
||||
|
||||
193
configuration_phi.py
Normal file
193
configuration_phi.py
Normal file
@ -0,0 +1,193 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
""" Phi model configuration"""
|
||||
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
class PhiConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the Phi
|
||||
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 51200):
|
||||
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`PhiModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 2048):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 8192):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 24):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
||||
Dropout probability for mlp outputs.
|
||||
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the embeddings.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio after computing the attention scores.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
||||
tokens.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||||
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
||||
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||||
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
||||
these scaling strategies behave:
|
||||
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
||||
is an experimental feature, subject to breaking API changes in future versions.
|
||||
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
||||
Percentage of the query and keys which will have rotary embedding.
|
||||
qk_layernorm (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to normalize the Queries and Keys after projecting the hidden states.
|
||||
bos_token_id (`int`, *optional*, defaults to 1):
|
||||
Denotes beginning of sequences token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 2):
|
||||
Denotes end of sequences token id.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import PhiModel, PhiConfig
|
||||
|
||||
>>> # Initializing a Phi-1 style configuration
|
||||
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
|
||||
|
||||
>>> # Initializing a model from the configuration
|
||||
>>> model = PhiModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "phi"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=51200,
|
||||
hidden_size=2048,
|
||||
intermediate_size=8192,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
resid_pdrop=0.0,
|
||||
embd_pdrop=0.0,
|
||||
attention_dropout=0.0,
|
||||
hidden_act="gelu_new",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
layer_norm_eps=1e-5,
|
||||
use_cache=True,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
partial_rotary_factor=0.5,
|
||||
qk_layernorm=False,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.attention_dropout = attention_dropout
|
||||
self.hidden_act = hidden_act
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.initializer_range = initializer_range
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.partial_rotary_factor = partial_rotary_factor
|
||||
self.qk_layernorm = qk_layernorm
|
||||
self._rope_scaling_validation()
|
||||
|
||||
super().__init__(
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
||||
def _rope_scaling_validation(self):
|
||||
"""
|
||||
Validate the `rope_scaling` configuration.
|
||||
"""
|
||||
if self.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
||||
f"got {self.rope_scaling}"
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||||
)
|
||||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
||||
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
||||
BIN
model.safetensors
(Stored with Git LFS)
BIN
model.safetensors
(Stored with Git LFS)
Binary file not shown.
1369
modeling_phi.py
Normal file
1369
modeling_phi.py
Normal file
File diff suppressed because it is too large
Load Diff
BIN
pytorch_model.bin
(Stored with Git LFS)
Normal file
BIN
pytorch_model.bin
(Stored with Git LFS)
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user