- add _no_split_modules property (7e925ddfdf2d1bb29fc26db755aafd77fb8f565e) Co-authored-by: wing lian <winglian@users.noreply.huggingface.co>
780 lines
32 KiB
Python
780 lines
32 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# Licensed under the MIT license.
|
|
|
|
# BSD 3-Clause License
|
|
#
|
|
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# * Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# * Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# * Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
from __future__ import annotations
|
|
|
|
import math
|
|
import copy
|
|
from typing import Any, Dict, Optional, Tuple
|
|
from dataclasses import dataclass, field
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from einops import rearrange
|
|
from transformers.activations import ACT2FN
|
|
from transformers import PretrainedConfig, PreTrainedModel
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
|
|
from .configuration_mixformer_sequential import MixFormerSequentialConfig
|
|
|
|
@dataclass
|
|
class InferenceParams:
|
|
"""Inference parameters that are passed to the main model in order
|
|
to efficienly calculate and store the context during inference.
|
|
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
|
max_sequence_len: int
|
|
max_batch_size: int
|
|
sequence_len_offset: int = 0
|
|
batch_size_offset: int = 0
|
|
key_value_memory_dict: dict = field(default_factory=dict)
|
|
fused_ft_kernel: bool = False
|
|
lengths_per_sample: Optional[torch.Tensor] = None
|
|
|
|
|
|
class Embedding(nn.Module):
|
|
"""Token embedding with dropout."""
|
|
|
|
def __init__(self, config: PretrainedConfig) -> None:
|
|
super().__init__()
|
|
|
|
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
|
self.drop = nn.Dropout(config.embd_pdrop)
|
|
|
|
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
|
hidden_states = self.wte(input_ids)
|
|
hidden_states = self.drop(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
class RotaryEmbedding(nn.Module):
|
|
"""PyTorch implementation of `flash-attn` RotaryEmbedding layer.
|
|
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
base: Optional[int] = 10000,
|
|
scale_base: Optional[float] = None,
|
|
device: Optional[str] = None,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
if scale_base is not None:
|
|
raise NotImplementedError
|
|
|
|
# Generate and save the inverse frequency buffer (non-trainable)
|
|
self.dim = dim
|
|
self.base = base
|
|
self.scale_base = scale_base
|
|
self.device = device
|
|
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
|
self.register_buffer("inv_freq", inv_freq)
|
|
|
|
scale = (
|
|
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
|
if scale_base is not None
|
|
else None
|
|
)
|
|
self.register_buffer("scale", scale)
|
|
|
|
self._seq_len_cached = 0
|
|
self._cos_cached = None
|
|
self._sin_cached = None
|
|
self._cos_k_cached = None
|
|
self._sin_k_cached = None
|
|
|
|
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: Optional[int] = 0) -> None:
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
seqlen = x.shape[1] + seqlen_offset
|
|
|
|
# Re-generate the inverse frequency buffer if it's not fp32
|
|
# (for instance if model.half() was called)
|
|
if self.inv_freq.dtype != "torch.float32":
|
|
self.inv_freq = 1.0 / (
|
|
self.base ** (torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32) / self.dim)
|
|
)
|
|
|
|
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=x.device, dtype=torch.float32)
|
|
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32))
|
|
if self.scale is None:
|
|
self._cos_cached = torch.cos(freqs).to(x.dtype)
|
|
self._sin_cached = torch.sin(freqs).to(x.dtype)
|
|
else:
|
|
power = (
|
|
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
|
) / self.scale_base
|
|
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
|
|
|
# We want the multiplication by scale to happen in fp32
|
|
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
|
|
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
|
|
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
|
|
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
|
|
|
|
def apply_rotary_emb_qkv(
|
|
self,
|
|
qkv: torch.FloatTensor,
|
|
sin: torch.FloatTensor,
|
|
cos: torch.FloatTensor,
|
|
sin_k: Optional[torch.FloatTensor] = None,
|
|
cos_k: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
_, seqlen, three, _, headdim = qkv.shape
|
|
assert three == 3
|
|
|
|
rotary_seqlen, rotary_dim = cos.shape
|
|
rotary_dim *= 2
|
|
assert rotary_dim <= headdim
|
|
assert seqlen <= rotary_seqlen
|
|
|
|
cos_k = cos if cos_k is None else cos_k
|
|
sin_k = sin if sin_k is None else sin_k
|
|
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
|
|
|
|
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
|
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
|
|
|
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
|
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
|
|
|
# Splits the queries and keys in half
|
|
q1, q2 = q_rot.chunk(2, dim=-1)
|
|
k1, k2 = k_rot.chunk(2, dim=-1)
|
|
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
|
|
|
# Casts to fp32 are necessary to prevent fp16 overflow issues
|
|
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
|
|
|
# Computes the new keys and queries, recasting to original dtype
|
|
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
|
|
|
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
|
|
|
return torch.cat(
|
|
[
|
|
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
|
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
|
qkv[:, :, 2:3, :, :],
|
|
],
|
|
axis=2,
|
|
)
|
|
|
|
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Perform the forward pass.
|
|
|
|
Args:
|
|
qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim).
|
|
seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch.
|
|
|
|
Returns:
|
|
New `qkv` and the cached sinusoids.
|
|
|
|
"""
|
|
|
|
self._update_cos_sin_cache(qkv, seqlen_offset)
|
|
|
|
return self.apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
|
|
|
|
def _update_kv_cache(kv, inference_params, layer_idx):
|
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
|
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
|
# Pre-allocate memory for key-values for inference.
|
|
num_heads, head_dim = kv.shape[-2:]
|
|
if layer_idx not in inference_params.key_value_memory_dict:
|
|
kv_cache = torch.empty(
|
|
inference_params.max_batch_size, inference_params.max_sequence_len, 2,
|
|
num_heads, head_dim, dtype=kv.dtype, device=kv.device
|
|
)
|
|
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
|
else:
|
|
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
|
|
|
# Adjust key and value for inference
|
|
batch_start = inference_params.batch_size_offset
|
|
batch_end = batch_start + kv.shape[0]
|
|
sequence_start = inference_params.sequence_len_offset
|
|
sequence_end = sequence_start + kv.shape[1]
|
|
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
|
|
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
|
|
|
|
assert kv_cache is not None
|
|
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
|
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
|
return kv
|
|
|
|
|
|
class MLP(nn.Module):
|
|
"""Multi-Layer Perceptron.
|
|
|
|
Reference:
|
|
Attention Is All You Need.
|
|
https://arxiv.org/pdf/1706.03762.pdf.
|
|
|
|
"""
|
|
|
|
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None:
|
|
super().__init__()
|
|
|
|
act_fn = config.activation_function if act_fn is None else act_fn
|
|
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
|
|
|
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
|
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
|
|
|
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
|
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
|
self.act = ACT2FN[act_fn]
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
|
old_keys = [prefix + "fc_in.weight", prefix + "fc_out.weight", prefix + "fc_in.bias", prefix + "fc_out.bias"]
|
|
new_keys = [prefix + "fc1.weight", prefix + "fc2.weight", prefix + "fc1.bias", prefix + "fc2.bias"]
|
|
|
|
if all(k in state_dict for k in old_keys) and not all(k in state_dict for k in new_keys):
|
|
# Older version of `MLP` saved with different key names.
|
|
for old_key, new_key in zip(old_keys, new_keys):
|
|
state_dict[new_key] = state_dict.pop(old_key)
|
|
|
|
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class FusedMLP(nn.Module):
|
|
"""Fused Multi-Layer Perceptron from `flash-attn`.
|
|
|
|
Reference:
|
|
https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/ops/fused_dense.py.
|
|
|
|
"""
|
|
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None,
|
|
raise_on_missing: bool = False) -> None:
|
|
super().__init__()
|
|
|
|
act_fn = config.activation_function if act_fn is None else act_fn
|
|
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
|
|
|
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
|
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
|
|
|
gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"]
|
|
activation = "gelu_approx" if act_fn in gelu_activations else "relu"
|
|
|
|
self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn)
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
|
return self.mlp(hidden_states)
|
|
|
|
class SelfAttention(nn.Module):
|
|
"""Implement the scaled dot product attention with softmax.
|
|
Adapted from https://github.com/Dao-AILab/flash-attention.
|
|
Arguments
|
|
---------
|
|
softmax_scale: The temperature to use for the softmax attention.
|
|
(default: 1/sqrt(d_keys) where d_keys is computed at
|
|
runtime)
|
|
attention_dropout: The dropout rate to apply to the attention
|
|
(default: 0.0)
|
|
"""
|
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
|
super().__init__()
|
|
self.causal = causal
|
|
self.softmax_scale = softmax_scale
|
|
self.drop = nn.Dropout(attention_dropout)
|
|
|
|
def forward(self, qkv, causal=None, key_padding_mask=None):
|
|
"""Implements the multihead softmax attention.
|
|
Arguments
|
|
---------
|
|
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
|
causal: if passed, will override self.causal
|
|
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
|
False means to mask out. (B, S)
|
|
"""
|
|
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
|
causal = self.causal if causal is None else causal
|
|
q, k, v = qkv.unbind(dim=2)
|
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
|
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
|
if key_padding_mask is not None:
|
|
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
|
|
device=scores.device)
|
|
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
|
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
|
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
|
if causal:
|
|
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
|
# So we have to construct the mask in float
|
|
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
|
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
|
scores = scores + causal_mask.to(dtype=scores.dtype)
|
|
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
|
attention_drop = self.drop(attention)
|
|
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
|
return output
|
|
|
|
|
|
class CrossAttention(nn.Module):
|
|
"""Implement the scaled dot product attention with softmax.
|
|
Adapted from https://github.com/Dao-AILab/flash-attention.
|
|
Arguments
|
|
---------
|
|
softmax_scale: The temperature to use for the softmax attention.
|
|
(default: 1/sqrt(d_keys) where d_keys is computed at
|
|
runtime)
|
|
attention_dropout: The dropout rate to apply to the attention
|
|
(default: 0.0)
|
|
"""
|
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
|
super().__init__()
|
|
self.causal = causal
|
|
self.softmax_scale = softmax_scale
|
|
self.drop = nn.Dropout(attention_dropout)
|
|
|
|
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
|
"""Implements the multihead softmax attention.
|
|
Arguments
|
|
---------
|
|
q: The tensor containing the query. (B, Sq, H, D)
|
|
kv: The tensor containing the key and value. (B, Sk, 2, H, D)
|
|
causal: if passed, will override self.causal
|
|
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
|
False means to mask out. (B, Sk)
|
|
"""
|
|
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
|
causal = self.causal if causal is None else causal
|
|
seqlen_k = kv.shape[1]
|
|
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
|
|
k, v = kv.unbind(dim=2)
|
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
|
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
|
if key_padding_mask is not None:
|
|
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
|
|
device=scores.device)
|
|
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
|
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
|
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
|
if causal:
|
|
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
|
# So we have to construct the mask in float
|
|
causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
|
|
device=scores.device), 1)
|
|
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
|
scores = scores + causal_mask.to(dtype=scores.dtype)
|
|
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
|
attention_drop = self.drop(attention)
|
|
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
|
return output
|
|
|
|
def find_mha_dims(
|
|
config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None
|
|
) -> Tuple[int, int]:
|
|
"""Validate and return the number of heads and head dimension for multi-head attention.
|
|
|
|
Args:
|
|
config: Model configuration.
|
|
n_head: Number of heads.
|
|
head_dim: Head dimension.
|
|
|
|
Returns:
|
|
Number of heads and head dimension.
|
|
|
|
"""
|
|
|
|
assert all(
|
|
hasattr(config, attr) for attr in ["n_embd", "n_head"]
|
|
), "`config` must have `n_embd` and `n_head` attributes."
|
|
|
|
if head_dim is None:
|
|
assert (
|
|
config.n_embd % config.n_head == 0
|
|
), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
|
|
|
|
if n_head is None and head_dim is None:
|
|
head_dim = config.n_embd // config.n_head
|
|
n_head = config.n_head
|
|
elif n_head is None or head_dim is None:
|
|
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
|
|
|
return n_head, head_dim
|
|
|
|
|
|
class MHA(nn.Module):
|
|
"""Multi-head attention layer.
|
|
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
rotary_dim: Optional[int] = None,
|
|
n_head: Optional[int] = None,
|
|
head_dim: Optional[int] = None,
|
|
bias: Optional[bool] = True,
|
|
dropout: Optional[float] = 0.0,
|
|
softmax_scale: Optional[float] = None,
|
|
causal: Optional[bool] = True,
|
|
layer_idx: Optional[int] = None,
|
|
rotary_emb_scale_base: Optional[float] = None,
|
|
return_residual: Optional[bool] = False,
|
|
checkpointing: Optional[bool] = False,
|
|
device: Optional[str] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
fused_dense: Optional[bool] = True,
|
|
flash_attn: Optional[bool] = True,
|
|
cutlass_attn: Optional[bool] = False,
|
|
flash_rotary: Optional[bool] = True,
|
|
raise_on_missing: Optional[bool] = False
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
factory_kwargs = {"device": device, "dtype": dtype}
|
|
n_head, head_dim = find_mha_dims(config, n_head, head_dim)
|
|
|
|
self.hidden_size = config.n_embd
|
|
self.n_head = n_head
|
|
self.head_dim = head_dim
|
|
self.op_size = n_head * head_dim
|
|
|
|
self.causal = causal
|
|
self.layer_idx = layer_idx
|
|
self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
|
self.fused_dense = fused_dense
|
|
self.flash_attn = flash_attn
|
|
self.cutlass_attn = cutlass_attn
|
|
self.flash_rotary = flash_rotary
|
|
self.return_residual = return_residual
|
|
self.checkpointing = checkpointing
|
|
|
|
if self.rotary_emb_dim > 0:
|
|
rotary_kwargs = {"device": device}
|
|
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
|
|
rotary_kwargs["scale_base"] = rotary_emb_scale_base
|
|
|
|
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
|
else:
|
|
pass
|
|
|
|
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.op_size, bias=bias, **factory_kwargs)
|
|
self.out_proj = nn.Linear(self.op_size, self.hidden_size, bias=bias, **factory_kwargs)
|
|
|
|
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
|
self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
|
|
|
def _update_kv_cache(self, kv: torch.FloatTensor, inference_params: InferenceParams) -> None:
|
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
|
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
|
|
|
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
|
|
|
|
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.FloatTensor,
|
|
x_kv: Optional[torch.FloatTensor] = None,
|
|
key_padding_mask: Optional[torch.BoolTensor] = None,
|
|
cu_seqlens: Optional[torch.LongTensor] = None,
|
|
max_seqlen: Optional[int] = None,
|
|
mixer_subset: Optional[torch.LongTensor] = None,
|
|
past_cache: Optional[InferenceParams] = None,
|
|
**kwargs
|
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
|
"""Perform the forward pass.
|
|
|
|
Args:
|
|
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
|
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
|
is the is the sum of the sequence lengths in the batch.
|
|
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
|
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
|
(batch, seqlen). Only applicable when not using FlashAttention.
|
|
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
|
of the sequences in the batch, used to index into x. Only applicable when using
|
|
FlashAttention.
|
|
max_seqlen: int. Maximum sequence length in the batch.
|
|
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
|
before applying the query projection. Useful for e.g., ViT where we only care
|
|
about the CLS token in the last layer.
|
|
past_cache: For generation only.
|
|
|
|
Returns:
|
|
(batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None,
|
|
else (total, hidden_dim) where total is the is the sum of the sequence lengths
|
|
in the batch.
|
|
|
|
"""
|
|
|
|
if cu_seqlens is not None:
|
|
assert max_seqlen is not None
|
|
assert key_padding_mask is None
|
|
assert self.flash_attn
|
|
assert self.rotary_emb_dim == 0
|
|
|
|
if key_padding_mask is not None:
|
|
assert cu_seqlens is None
|
|
assert max_seqlen is None
|
|
assert not self.flash_attn
|
|
|
|
if past_cache is not None:
|
|
assert key_padding_mask is None
|
|
assert cu_seqlens is None and max_seqlen is None
|
|
|
|
attn_kwargs = {"key_padding_mask": key_padding_mask}
|
|
|
|
assert x_kv is None and mixer_subset is None
|
|
|
|
qkv = self.Wqkv(x)
|
|
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
|
|
|
if past_cache is None:
|
|
if self.rotary_emb_dim > 0:
|
|
qkv = self.rotary_emb(qkv)
|
|
context = self.inner_attn(qkv, **attn_kwargs)
|
|
|
|
else:
|
|
if self.rotary_emb_dim > 0:
|
|
qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset)
|
|
q = qkv[:, :, 0]
|
|
kv = self._update_kv_cache(qkv[:, :, 1:], past_cache)
|
|
# If we're processing the prompt, causal=None (use self.causal).
|
|
# If we're decoding, then causal=False.
|
|
causal = None if past_cache.sequence_len_offset == 0 else False
|
|
context = self.inner_cross_attn(q, kv, causal=causal)
|
|
|
|
out = rearrange(context, "... h d -> ... (h d)")
|
|
out = self.out_proj(out)
|
|
|
|
return out if not self.return_residual else (out, x)
|
|
|
|
class ParallelBlock(nn.Module):
|
|
"""Parallel block.
|
|
|
|
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
mixer: Optional[Dict[str, Any]] = None,
|
|
mlp: Optional[Dict[str, Any]] = None,
|
|
block_idx: Optional[int] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
|
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
|
self.block_idx = block_idx
|
|
|
|
self.mixer = MHA(config=config, **mixer, layer_idx=block_idx)
|
|
mlp_cls = mlp.pop('mlp_cls')
|
|
if mlp_cls == 'fused_mlp':
|
|
self.mlp = FusedMLP(config=config, **mlp)
|
|
else:
|
|
self.mlp = MLP(config=config, **mlp)
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor,
|
|
past_cache: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
|
|
residual = hidden_states
|
|
hidden_states = self.ln(hidden_states)
|
|
|
|
attn_outputs = self.mixer(hidden_states, past_cache=past_cache)
|
|
if isinstance(attn_outputs, tuple):
|
|
attn_outputs = attn_outputs[0]
|
|
|
|
attn_outputs = self.resid_dropout(attn_outputs)
|
|
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
|
|
|
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
|
|
|
return hidden_states
|
|
|
|
class CausalLMHead(nn.Module):
|
|
"""Causal Language Modeling head.
|
|
|
|
Reference:
|
|
Improving Language Understanding by Generative Pre-Training.
|
|
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
|
|
|
"""
|
|
|
|
def __init__(self, config: PretrainedConfig) -> None:
|
|
super().__init__()
|
|
|
|
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
|
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
|
hidden_states = self.ln(hidden_states)
|
|
logits = self.linear(hidden_states).to(torch.float32)
|
|
|
|
return logits
|
|
|
|
|
|
class CausalLMLoss(nn.Module):
|
|
"""Causal Language Modeling loss.
|
|
|
|
Reference:
|
|
Improving Language Understanding by Generative Pre-Training.
|
|
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
|
|
|
"""
|
|
|
|
def __init__(self, shift_labels: Optional[bool] = True) -> None:
|
|
super().__init__()
|
|
|
|
self.shift_labels = shift_labels
|
|
self.loss_fct = nn.CrossEntropyLoss()
|
|
|
|
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
|
|
if self.shift_labels:
|
|
logits = logits[..., :-1, :].contiguous()
|
|
labels = labels[..., 1:].contiguous()
|
|
|
|
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
|
|
|
return loss
|
|
|
|
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
|
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
|
|
|
|
config_class = MixFormerSequentialConfig
|
|
base_model_prefix = "transformer"
|
|
supports_gradient_checkpointing = True
|
|
|
|
def __init__(self, *inputs, **kwargs) -> None:
|
|
super().__init__(*inputs, **kwargs)
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs) -> Dict[str, Any]:
|
|
if "use_cache" in kwargs and not kwargs["use_cache"]:
|
|
return {"input_ids": input_ids}
|
|
|
|
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
|
past_key_values = InferenceParams(
|
|
max_batch_size=input_ids.shape[0],
|
|
max_sequence_len=self.config.n_positions,
|
|
sequence_len_offset=0,
|
|
batch_size_offset=0,
|
|
fused_ft_kernel=False,
|
|
key_value_memory_dict={},
|
|
)
|
|
else:
|
|
# assume past_key_values has cached all but last token in input_ids
|
|
past_key_values.sequence_len_offset = len(input_ids[0]) - 1
|
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
|
|
return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs}
|
|
|
|
|
|
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
|
"""MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
|
|
|
|
_keys_to_ignore_on_load_missing = [""]
|
|
_keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
|
_no_split_modules = ["ParallelBlock"]
|
|
|
|
def __init__(self, config: MixFormerSequentialConfig) -> None:
|
|
super().__init__(config)
|
|
|
|
modules = [Embedding(config)]
|
|
block_config = config.architecture
|
|
|
|
if not isinstance(block_config, list):
|
|
block_config = [block_config for _ in range(config.n_layer)]
|
|
|
|
if config.n_layer != len(block_config):
|
|
config.n_layer = len(block_config)
|
|
|
|
for block_idx, block in enumerate(block_config):
|
|
# `block_cls` with `legacy` value is for backward compatibility
|
|
# `path` key is for backward compatibility
|
|
block = copy.deepcopy(block) or {"block_cls": "parallel"}
|
|
block_cls = block.pop("path", None) or block.pop("block_cls", None)
|
|
|
|
block["block_idx"] = block_idx
|
|
modules.append(ParallelBlock(config, **block))
|
|
|
|
modules.append(CausalLMHead(config))
|
|
|
|
self.layers = nn.Sequential(*modules)
|
|
self.loss = CausalLMLoss()
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self) -> nn.Embedding:
|
|
return self.layers[0].wte
|
|
|
|
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
|
self.layers[0].wte = new_embeddings
|
|
|
|
def get_output_embeddings(self) -> nn.Linear:
|
|
return self.layers[-1].linear
|
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
|
self.layers[-1].linear = new_embeddings
|
|
|
|
def forward(
|
|
self, input_ids: torch.LongTensor, labels: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[torch.FloatTensor] = None, **kwargs
|
|
) -> CausalLMOutputWithPast:
|
|
|
|
if not past_key_values:
|
|
lm_logits = self.layers(input_ids)
|
|
else:
|
|
hidden_layer = self.layers[0](input_ids)
|
|
for module in self.layers[1:-1]:
|
|
hidden_layer = module(hidden_layer, past_cache=past_key_values)
|
|
lm_logits = self.layers[-1](hidden_layer)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.loss(lm_logits, labels)
|
|
|
|
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|