rag-chain-agent/app/embedding.py
2025-04-22 23:56:02 +00:00

34 lines
1.2 KiB
Python

from langchain.embeddings.base import Embeddings
from typing import List, Dict, Any
import requests
import os
embedding_host = os.getenv("EMBEDDING_HOST", "http://183.111.96.67:30136")
class WeaviateCustomEmbeddings(Embeddings):
"""커스텀 엔드포인트를 사용하는 임베딩 모델"""
def __init__(self):
self.api_url = embedding_host.rstrip("/")
print(self.api_url)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""문서 리스트를 임베딩합니다."""
embeddings = []
for text in texts:
embeddings.append(self.embed_query(text))
return embeddings
def embed_query(self, text: str) -> List[float]:
"""쿼리 텍스트를 임베딩합니다."""
query_text = text.question if hasattr(text, 'question') else str(text)
response = requests.post(
f"{self.api_url}/vectors",
json={"text": query_text}
)
if response.status_code != 200:
raise ValueError(f"임베딩 API 호출 실패: {self.api_url}/vectors, {query_text}, {response.status_code}, {response.text}")
return response.json()["vector"]