38 lines
1.1 KiB
Python
38 lines
1.1 KiB
Python
import triton_python_backend_utils as pb_utils
|
|
import numpy as np
|
|
import json
|
|
import random
|
|
import string
|
|
|
|
class TritonPythonModel:
|
|
def initialize(self, args):
|
|
self.logger = pb_utils.Logger
|
|
self.logger.log_info(f"'{args["model_name"]}' 모델 초기화 완료")
|
|
|
|
def execute(self, requests):
|
|
responses = []
|
|
|
|
for request in requests:
|
|
input_tensor = pb_utils.get_input_tensor_by_name(request, "INPUT")
|
|
|
|
input_data = input_tensor.as_numpy()[0].decode("utf-8")
|
|
self.logger.log_info(f"INPUT: {input_data}")
|
|
|
|
random_string = ''.join(
|
|
random.choice(string.ascii_letters + string.digits) for _ in range(10)
|
|
)
|
|
self.logger.log_info(f"OUTPUT: {random_string}")
|
|
|
|
output_tensor = pb_utils.Tensor(
|
|
"OUTPUT",
|
|
np.array([random_string.encode("utf-8")], dtype=np.object_)
|
|
)
|
|
|
|
responses.append(pb_utils.InferenceResponse(
|
|
output_tensors=[output_tensor]
|
|
))
|
|
|
|
return responses
|
|
|
|
def finalize(self):
|
|
pass |