feat: add dropout support
This commit is contained in:
parent
4c846d7114
commit
810b45c00e
@ -65,6 +65,8 @@ class StableLMEpochConfig(PretrainedConfig):
|
|||||||
Whether or not the model should use bias for qkv layers.
|
Whether or not the model should use bias for qkv layers.
|
||||||
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
||||||
Whether to tie weight embeddings
|
Whether to tie weight embeddings
|
||||||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||||
|
The dropout ratio for the attention probabilities.
|
||||||
"""
|
"""
|
||||||
model_type = "stablelm_epoch"
|
model_type = "stablelm_epoch"
|
||||||
keys_to_ignore_at_inference = ["past_key_values"]
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||||||
@ -88,6 +90,7 @@ class StableLMEpochConfig(PretrainedConfig):
|
|||||||
bos_token_id=0,
|
bos_token_id=0,
|
||||||
eos_token_id=2,
|
eos_token_id=2,
|
||||||
tie_word_embeddings=False,
|
tie_word_embeddings=False,
|
||||||
|
attention_dropout: float = 0.0,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
self.vocab_size = vocab_size
|
self.vocab_size = vocab_size
|
||||||
@ -105,6 +108,7 @@ class StableLMEpochConfig(PretrainedConfig):
|
|||||||
self.use_cache = use_cache
|
self.use_cache = use_cache
|
||||||
self.use_qkv_bias = use_qkv_bias
|
self.use_qkv_bias = use_qkv_bias
|
||||||
self.tie_word_embeddings = tie_word_embeddings
|
self.tie_word_embeddings = tie_word_embeddings
|
||||||
|
self.attention_dropout = attention_dropout
|
||||||
super().__init__(
|
super().__init__(
|
||||||
bos_token_id=bos_token_id,
|
bos_token_id=bos_token_id,
|
||||||
eos_token_id=eos_token_id,
|
eos_token_id=eos_token_id,
|
||||||
|
|||||||
@ -191,6 +191,7 @@ class Attention(nn.Module):
|
|||||||
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||||||
self.max_position_embeddings = config.max_position_embeddings
|
self.max_position_embeddings = config.max_position_embeddings
|
||||||
self.is_causal = True
|
self.is_causal = True
|
||||||
|
self.attention_dropout = config.attention_dropout
|
||||||
|
|
||||||
if (self.head_dim * self.num_heads) != self.hidden_size:
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -275,6 +276,7 @@ class Attention(nn.Module):
|
|||||||
|
|
||||||
# Upcast attention to fp32
|
# Upcast attention to fp32
|
||||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||||
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user