diff --git a/bus.jpg b/bus.jpg deleted file mode 100644 index 40eaaf5..0000000 Binary files a/bus.jpg and /dev/null differ diff --git a/yolo11.ipynb b/yolo11.ipynb deleted file mode 100644 index 1793886..0000000 --- a/yolo11.ipynb +++ /dev/null @@ -1,444 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "8eb76ac4-c771-46b8-bff0-c6f93dd44658", - "metadata": { - "execution": { - "iopub.execute_input": "2025-09-22T07:50:17.846472Z", - "iopub.status.busy": "2025-09-22T07:50:17.845771Z", - "iopub.status.idle": "2025-09-22T07:50:19.023362Z", - "shell.execute_reply": "2025-09-22T07:50:19.020694Z", - "shell.execute_reply.started": "2025-09-22T07:50:17.846409Z" - } - }, - "outputs": [], - "source": [ - "!pip list | grep -i ultralytics" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "f5ab5797-3b8b-414b-a618-86c352620da9", - "metadata": { - "execution": { - "iopub.execute_input": "2025-09-22T07:50:26.238547Z", - "iopub.status.busy": "2025-09-22T07:50:26.237920Z", - "iopub.status.idle": "2025-09-22T07:50:38.265301Z", - "shell.execute_reply": "2025-09-22T07:50:38.261814Z", - "shell.execute_reply.started": "2025-09-22T07:50:26.238489Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting ultralytics\n", - " Downloading ultralytics-8.3.202-py3-none-any.whl.metadata (37 kB)\n", - "Requirement already satisfied: numpy>=1.23.0 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from ultralytics) (1.26.4)\n", - "Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (3.10.6)\n", - "Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (4.12.0.88)\n", - "Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (11.3.0)\n", - "Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (6.0.2)\n", - "Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.32.5)\n", - "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (1.16.2)\n", - "Requirement already satisfied: torch>=1.8.0 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from ultralytics) (2.8.0)\n", - "Requirement already satisfied: torchvision>=0.9.0 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from ultralytics) (0.23.0)\n", - "Requirement already satisfied: psutil in /usr/local/lib/python3.12/dist-packages (from ultralytics) (7.0.0)\n", - "Collecting polars (from ultralytics)\n", - " Downloading polars-1.33.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (15 kB)\n", - "Collecting ultralytics-thop>=2.0.0 (from ultralytics)\n", - " Downloading ultralytics_thop-2.0.17-py3-none-any.whl.metadata (14 kB)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.3.3)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (4.59.2)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.4.9)\n", - "Requirement already satisfied: packaging>=20.0 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (25.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (3.2.4)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n", - "Collecting numpy>=1.23.0 (from ultralytics)\n", - " Downloading numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (62 kB)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.17.0)\n", - "Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (3.4.3)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (3.10)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (2.5.0)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (2025.8.3)\n", - "Requirement already satisfied: filelock in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (3.19.1)\n", - "Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (4.15.0)\n", - "Requirement already satisfied: setuptools in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (80.9.0)\n", - "Requirement already satisfied: sympy>=1.13.3 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (1.14.0)\n", - "Requirement already satisfied: networkx in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.5)\n", - "Requirement already satisfied: jinja2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.0.3)\n", - "Requirement already satisfied: fsspec in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (2025.3.0)\n", - "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.8.93 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (12.8.93)\n", - "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.8.90 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (12.8.90)\n", - "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.8.90 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (12.8.90)\n", - "Requirement already satisfied: nvidia-cudnn-cu12==9.10.2.21 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (9.10.2.21)\n", - "Requirement already satisfied: nvidia-cublas-cu12==12.8.4.1 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (12.8.4.1)\n", - "Requirement already satisfied: nvidia-cufft-cu12==11.3.3.83 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (11.3.3.83)\n", - "Requirement already satisfied: nvidia-curand-cu12==10.3.9.90 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (10.3.9.90)\n", - "Requirement already satisfied: nvidia-cusolver-cu12==11.7.3.90 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (11.7.3.90)\n", - "Requirement already satisfied: nvidia-cusparse-cu12==12.5.8.93 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (12.5.8.93)\n", - "Requirement already satisfied: nvidia-cusparselt-cu12==0.7.1 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (0.7.1)\n", - "Requirement already satisfied: nvidia-nccl-cu12==2.27.3 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (2.27.3)\n", - "Requirement already satisfied: nvidia-nvtx-cu12==12.8.90 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (12.8.90)\n", - "Requirement already satisfied: nvidia-nvjitlink-cu12==12.8.93 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (12.8.93)\n", - "Requirement already satisfied: nvidia-cufile-cu12==1.13.1.3 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (1.13.1.3)\n", - "Requirement already satisfied: triton==3.4.0 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (3.4.0)\n", - "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.12/dist-packages (from sympy>=1.13.3->torch>=1.8.0->ultralytics) (1.3.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.12/dist-packages (from jinja2->torch>=1.8.0->ultralytics) (3.0.2)\n", - "Downloading ultralytics-8.3.202-py3-none-any.whl (1.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.5/16.5 MB\u001b[0m \u001b[31m25.1 MB/s\u001b[0m \u001b[33m0:00:00\u001b[0mm0:00:01\u001b[0m:00:01\u001b[0m\n", - "\u001b[?25hDownloading ultralytics_thop-2.0.17-py3-none-any.whl (28 kB)\n", - "Downloading polars-1.33.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m39.7/39.7 MB\u001b[0m \u001b[31m32.2 MB/s\u001b[0m \u001b[33m0:00:01\u001b[0mm0:00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hInstalling collected packages: polars, numpy, ultralytics-thop, ultralytics\n", - "\u001b[2K Attempting uninstall: numpy━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0/4\u001b[0m [polars]\n", - "\u001b[2K Found existing installation: numpy 1.26.4[0m \u001b[32m0/4\u001b[0m [polars]\n", - "\u001b[2K Uninstalling numpy-1.26.4:0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/4\u001b[0m [numpy]\n", - "\u001b[2K Successfully uninstalled numpy-1.26.4━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/4\u001b[0m [numpy]\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4/4\u001b[0m [ultralytics]\u001b[0m [ultralytics]\n", - "\u001b[1A\u001b[2KSuccessfully installed numpy-2.2.6 polars-1.33.1 ultralytics-8.3.202 ultralytics-thop-2.0.17\n" - ] - } - ], - "source": [ - "!pip install ultralytics" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "e82046f5-a942-41f7-8673-910cd541f57a", - "metadata": { - "execution": { - "iopub.execute_input": "2025-09-22T07:51:08.566226Z", - "iopub.status.busy": "2025-09-22T07:51:08.565474Z", - "iopub.status.idle": "2025-09-22T07:51:11.134155Z", - "shell.execute_reply": "2025-09-22T07:51:11.133042Z", - "shell.execute_reply.started": "2025-09-22T07:51:08.566162Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Creating new Ultralytics Settings v0.0.6 file ✅ \n", - "View Ultralytics Settings with 'yolo settings' or at '/home/jovyan/.config/Ultralytics/settings.json'\n", - "Update Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. For help see https://docs.ultralytics.com/quickstart/#ultralytics-settings.\n" - ] - } - ], - "source": [ - "from ultralytics import YOLO" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "57e49c8c-9c80-45db-b2c8-8ec9a543ab62", - "metadata": { - "execution": { - "iopub.execute_input": "2025-09-22T07:51:12.312367Z", - "iopub.status.busy": "2025-09-22T07:51:12.311358Z", - "iopub.status.idle": "2025-09-22T07:51:12.921344Z", - "shell.execute_reply": "2025-09-22T07:51:12.920088Z", - "shell.execute_reply.started": "2025-09-22T07:51:12.312301Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[KDownloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt to 'yolo11n.pt': 100% ━━━━━━━━━━━━ 5.4MB 99.0MB/s 0.1ss\n" - ] - } - ], - "source": [ - "# Load the YOLO11 model\n", - "model = YOLO(\"yolo11n.pt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "7c9b7c1c-a269-433c-90cc-f73c7854cd6f", - "metadata": { - "execution": { - "iopub.execute_input": "2025-09-22T07:51:21.848608Z", - "iopub.status.busy": "2025-09-22T07:51:21.847860Z", - "iopub.status.idle": "2025-09-22T07:53:42.507589Z", - "shell.execute_reply": "2025-09-22T07:53:42.505881Z", - "shell.execute_reply.started": "2025-09-22T07:51:21.848546Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING ⚠️ TensorRT requires GPU export, automatically assigning device=0\n", - "Ultralytics 8.3.202 🚀 Python-3.12.3 torch-2.8.0+cu128 CUDA:0 (NVIDIA GeForce RTX 2080 Ti, 10823MiB)\n", - "💡 ProTip: Export to OpenVINO format for best performance on Intel hardware. Learn more at https://docs.ultralytics.com/integrations/openvino/\n", - "YOLO11n summary (fused): 100 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs\n", - "\n", - "\u001b[34m\u001b[1mPyTorch:\u001b[0m starting from 'yolo11n.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (5.4 MB)\n", - "\u001b[31m\u001b[1mrequirements:\u001b[0m Ultralytics requirements ['onnx>=1.12.0', 'onnxslim>=0.1.67', 'onnxruntime-gpu'] not found, attempting AutoUpdate...\n", - "Collecting onnx>=1.12.0\n", - " Downloading onnx-1.19.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (7.0 kB)\n", - "Collecting onnxslim>=0.1.67\n", - " Downloading onnxslim-0.1.69-py3-none-any.whl.metadata (7.6 kB)\n", - "Collecting onnxruntime-gpu\n", - " Downloading onnxruntime_gpu-1.22.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (5.1 kB)\n", - "Requirement already satisfied: numpy>=1.22 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from onnx>=1.12.0) (2.2.6)\n", - "Requirement already satisfied: protobuf>=4.25.1 in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from onnx>=1.12.0) (6.32.1)\n", - "Requirement already satisfied: typing_extensions>=4.7.1 in /usr/local/lib/python3.12/dist-packages (from onnx>=1.12.0) (4.15.0)\n", - "Requirement already satisfied: ml_dtypes in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from onnx>=1.12.0) (0.5.3)\n", - "Requirement already satisfied: sympy>=1.13.3 in /usr/local/lib/python3.12/dist-packages (from onnxslim>=0.1.67) (1.14.0)\n", - "Requirement already satisfied: packaging in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from onnxslim>=0.1.67) (25.0)\n", - "Requirement already satisfied: colorama in /usr/local/lib/python3.12/dist-packages (from onnxslim>=0.1.67) (0.4.6)\n", - "Collecting coloredlogs (from onnxruntime-gpu)\n", - " Downloading coloredlogs-15.0.1-py2.py3-none-any.whl.metadata (12 kB)\n", - "Requirement already satisfied: flatbuffers in /home/jovyan/.venv/tf2.20.0-py3.12-cuda12.8/lib/python3.12/site-packages (from onnxruntime-gpu) (25.2.10)\n", - "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.12/dist-packages (from sympy>=1.13.3->onnxslim>=0.1.67) (1.3.0)\n", - "Collecting humanfriendly>=9.1 (from coloredlogs->onnxruntime-gpu)\n", - " Downloading humanfriendly-10.0-py2.py3-none-any.whl.metadata (9.2 kB)\n", - "Downloading onnx-1.19.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (18.2 MB)\n", - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/18.2 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━\u001b[0m \u001b[32m11.5/18.2 MB\u001b[0m \u001b[31m98.9 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.2/18.2 MB\u001b[0m \u001b[31m50.8 MB/s\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading onnxslim-0.1.69-py3-none-any.whl (164 kB)\n", - "Downloading onnxruntime_gpu-1.22.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (283.2 MB)\n", - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/283.2 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\n", - "\u001b[2K \u001b[91m━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.3/283.2 MB\u001b[0m \u001b[31m100.2 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\n", - "\u001b[2K \u001b[91m━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.8/283.2 MB\u001b[0m \u001b[31m43.7 MB/s\u001b[0m eta \u001b[36m0:00:07\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m29.4/283.2 MB\u001b[0m \u001b[31m54.8 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m34.9/283.2 MB\u001b[0m \u001b[31m42.6 MB/s\u001b[0m eta \u001b[36m0:00:06\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.1/283.2 MB\u001b[0m \u001b[31m41.2 MB/s\u001b[0m eta \u001b[36m0:00:06\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.1/283.2 MB\u001b[0m \u001b[31m40.8 MB/s\u001b[0m eta \u001b[36m0:00:06\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m52.4/283.2 MB\u001b[0m \u001b[31m41.8 MB/s\u001b[0m eta \u001b[36m0:00:06\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.1/283.2 MB\u001b[0m \u001b[31m41.0 MB/s\u001b[0m eta \u001b[36m0:00:06\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m73.9/283.2 MB\u001b[0m \u001b[31m43.3 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.8/283.2 MB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:06\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m95.7/283.2 MB\u001b[0m \u001b[31m43.2 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m97.0/283.2 MB\u001b[0m \u001b[31m39.5 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.6/283.2 MB\u001b[0m \u001b[31m41.6 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m119.3/283.2 MB\u001b[0m \u001b[31m42.9 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m120.6/283.2 MB\u001b[0m \u001b[31m39.2 MB/s\u001b[0m eta \u001b[36m0:00:05\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m131.1/283.2 MB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m137.1/283.2 MB\u001b[0m \u001b[31m39.3 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m150.5/283.2 MB\u001b[0m \u001b[31m40.7 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.4/283.2 MB\u001b[0m \u001b[31m39.7 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m157.5/283.2 MB\u001b[0m \u001b[31m38.4 MB/s\u001b[0m eta \u001b[36m0:00:04\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━\u001b[0m \u001b[32m170.4/283.2 MB\u001b[0m \u001b[31m39.5 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━\u001b[0m \u001b[32m170.9/283.2 MB\u001b[0m \u001b[31m39.5 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━\u001b[0m \u001b[32m178.5/283.2 MB\u001b[0m \u001b[31m37.9 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━\u001b[0m \u001b[32m188.5/283.2 MB\u001b[0m \u001b[31m38.2 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━\u001b[0m \u001b[32m198.2/283.2 MB\u001b[0m \u001b[31m39.4 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m205.8/283.2 MB\u001b[0m \u001b[31m38.5 MB/s\u001b[0m eta \u001b[36m0:00:03\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m210.2/283.2 MB\u001b[0m \u001b[31m39.0 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━\u001b[0m \u001b[32m218.1/283.2 MB\u001b[0m \u001b[31m38.2 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━\u001b[0m \u001b[32m221.8/283.2 MB\u001b[0m \u001b[31m37.2 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m232.0/283.2 MB\u001b[0m \u001b[31m38.2 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━\u001b[0m \u001b[32m237.8/283.2 MB\u001b[0m \u001b[31m37.3 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━\u001b[0m \u001b[32m243.8/283.2 MB\u001b[0m \u001b[31m37.1 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━\u001b[0m \u001b[32m250.3/283.2 MB\u001b[0m \u001b[31m37.7 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m258.5/283.2 MB\u001b[0m \u001b[31m37.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━\u001b[0m \u001b[32m263.5/283.2 MB\u001b[0m \u001b[31m36.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━\u001b[0m \u001b[32m270.5/283.2 MB\u001b[0m \u001b[31m35.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m \u001b[32m277.6/283.2 MB\u001b[0m \u001b[31m35.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m283.2/283.2 MB\u001b[0m \u001b[31m35.9 MB/s\u001b[0m \u001b[33m0:00:07\u001b[0m\n", - "\u001b[?25hDownloading coloredlogs-15.0.1-py2.py3-none-any.whl (46 kB)\n", - "Downloading humanfriendly-10.0-py2.py3-none-any.whl (86 kB)\n", - "Installing collected packages: humanfriendly, onnx, coloredlogs, onnxslim, onnxruntime-gpu\n", - "\u001b[?25l\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1/5\u001b[0m [onnx]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3/5\u001b[0m [onnxslim]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━\u001b[0m \u001b[32m4/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5/5\u001b[0m [onnxruntime-gpu]\n", - "\u001b[?25h\n", - "\u001b[1A\u001b[2KSuccessfully installed coloredlogs-15.0.1 humanfriendly-10.0 onnx-1.19.0 onnxruntime-gpu-1.22.0 onnxslim-0.1.69\n", - "\n", - "\u001b[31m\u001b[1mrequirements:\u001b[0m AutoUpdate success ✅ 21.9s\n", - "WARNING ⚠️ \u001b[31m\u001b[1mrequirements:\u001b[0m \u001b[1mRestart runtime or rerun command for updates to take effect\u001b[0m\n", - "\n", - "\n", - "\u001b[34m\u001b[1mONNX:\u001b[0m starting export with onnx 1.19.0 opset 19...\n", - "\u001b[34m\u001b[1mONNX:\u001b[0m slimming with onnxslim 0.1.69...\n", - "\u001b[34m\u001b[1mONNX:\u001b[0m export success ✅ 24.2s, saved as 'yolo11n.onnx' (10.2 MB)\n", - "\n", - "\u001b[34m\u001b[1mTensorRT:\u001b[0m starting export with TensorRT 10.9.0.34...\n", - "[09/22/2025-07:51:47] [TRT] [I] [MemUsageChange] Init CUDA: CPU -2, GPU +0, now: CPU 693, GPU 314 (MiB)\n", - "[09/22/2025-07:51:50] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +1141, GPU +192, now: CPU 2024, GPU 506 (MiB)\n", - "[09/22/2025-07:51:50] [TRT] [I] ----------------------------------------------------------------\n", - "[09/22/2025-07:51:50] [TRT] [I] Input filename: yolo11n.onnx\n", - "[09/22/2025-07:51:50] [TRT] [I] ONNX IR version: 0.0.9\n", - "[09/22/2025-07:51:50] [TRT] [I] Opset version: 19\n", - "[09/22/2025-07:51:50] [TRT] [I] Producer name: pytorch\n", - "[09/22/2025-07:51:50] [TRT] [I] Producer version: 2.8.0\n", - "[09/22/2025-07:51:50] [TRT] [I] Domain: \n", - "[09/22/2025-07:51:50] [TRT] [I] Model version: 0\n", - "[09/22/2025-07:51:50] [TRT] [I] Doc string: \n", - "[09/22/2025-07:51:50] [TRT] [I] ----------------------------------------------------------------\n", - "\u001b[34m\u001b[1mTensorRT:\u001b[0m input \"images\" with shape(1, 3, 640, 640) DataType.FLOAT\n", - "\u001b[34m\u001b[1mTensorRT:\u001b[0m output \"output0\" with shape(1, 84, 8400) DataType.FLOAT\n", - "\u001b[34m\u001b[1mTensorRT:\u001b[0m building FP32 engine as yolo11n.engine\n", - "[09/22/2025-07:51:50] [TRT] [I] BuilderFlag::kTF32 is set but hardware does not support TF32. Disabling TF32.\n", - "[09/22/2025-07:51:50] [TRT] [I] BuilderFlag::kTF32 is set but hardware does not support TF32. Disabling TF32.\n", - "[09/22/2025-07:51:50] [TRT] [I] Local timing cache in use. Profiling results in this builder pass will not be stored.\n", - "[09/22/2025-07:52:45] [TRT] [I] Compiler backend is used during engine build.\n", - "[09/22/2025-07:53:41] [TRT] [I] Detected 1 inputs and 1 output network tensors.\n", - "[09/22/2025-07:53:41] [TRT] [I] Total Host Persistent Memory: 423184 bytes\n", - "[09/22/2025-07:53:41] [TRT] [I] Total Device Persistent Memory: 711680 bytes\n", - "[09/22/2025-07:53:41] [TRT] [I] Max Scratch Memory: 2764800 bytes\n", - "[09/22/2025-07:53:41] [TRT] [I] [BlockAssignment] Started assigning block shifts. This will take 299 steps to complete.\n", - "[09/22/2025-07:53:41] [TRT] [I] [BlockAssignment] Algorithm ShiftNTopDown took 43.6829ms to assign 11 blocks to 299 nodes requiring 19252224 bytes.\n", - "[09/22/2025-07:53:41] [TRT] [I] Total Activation Memory: 19251200 bytes\n", - "[09/22/2025-07:53:41] [TRT] [I] Total Weights Memory: 11513924 bytes\n", - "[09/22/2025-07:53:42] [TRT] [I] Compiler backend is used during engine execution.\n", - "[09/22/2025-07:53:42] [TRT] [I] Engine generation completed in 111.239 seconds.\n", - "[09/22/2025-07:53:42] [TRT] [I] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 1 MiB, GPU 261 MiB\n", - "\u001b[34m\u001b[1mTensorRT:\u001b[0m export success ✅ 139.2s, saved as 'yolo11n.engine' (13.2 MB)\n", - "\n", - "Export complete (140.6s)\n", - "Results saved to \u001b[1m/home/jovyan/model/groupuser/yolo11-tensorrt\u001b[0m\n", - "Predict: yolo predict task=detect model=yolo11n.engine imgsz=640 \n", - "Validate: yolo val task=detect model=yolo11n.engine imgsz=640 data=/usr/src/ultralytics/ultralytics/cfg/datasets/coco.yaml \n", - "Visualize: https://netron.app\n" - ] - }, - { - "data": { - "text/plain": [ - "'yolo11n.engine'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Export the model to TensorRT format\n", - "model.export(format=\"engine\") # creates 'yolo11n.engine'" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "18eecf5a-3cdc-4d84-82db-545eebffc523", - "metadata": { - "execution": { - "iopub.execute_input": "2025-09-22T07:53:54.847090Z", - "iopub.status.busy": "2025-09-22T07:53:54.846001Z", - "iopub.status.idle": "2025-09-22T07:53:54.860323Z", - "shell.execute_reply": "2025-09-22T07:53:54.859102Z", - "shell.execute_reply.started": "2025-09-22T07:53:54.846996Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify','pose' or 'obb'.\n" - ] - } - ], - "source": [ - "# Load the exported TensorRT model\n", - "tensorrt_model = YOLO(\"yolo11n.engine\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4cd3752f-3ed6-4d73-9394-9c04ae4d057f", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "tf2.20.0-py3.12-cuda12.8", - "language": "python", - "name": "tf2.20.0-py3.12-cuda12.8" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/yolo11n.onnx b/yolo11n.onnx deleted file mode 100644 index 44c324f..0000000 --- a/yolo11n.onnx +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bfb0d08b629c9bd4a512b181686afd6d45dfc63354e686971dd82fdb9100e01b -size 10741357 diff --git a/yolo11n.pt b/yolo11n.pt deleted file mode 100644 index c7723db..0000000 --- a/yolo11n.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ebbc80d4a7680d14987a577cd21342b65ecfd94632bd9a8da63ae6417644ee1 -size 5613764