rag-agent-soo/app/rag_chain.py
2025-04-21 01:40:31 +00:00

62 lines
2.5 KiB
Python

# rag_chain.py
import os
import weaviate
from weaviate.auth import AuthApiKey
from weaviate.classes.init import Auth
from langchain.vectorstores import Weaviate
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
def build_rag_chain():
# 1. Weaviate 클라이언트
auth_config = weaviate.AuthApiKey(api_key="01jryrcctd8c8vxbj4bs2ywrgs")
# client = weaviate.connect_to_weaviate_cloud(cluster_url="http://183.111.96.67:32668",
# auth_credentials=Auth.api_key("01jryrcctd8c8vxbj4bs2ywrgs"),
# headers={
# "X-OpenAI-Api-Key": "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" # 필요할 경우
# })
# client = weaviate.Client(
# url="http://183.111.96.67:32668", # 예: "http://183.111.96.67:32668"
# auth_client_secret=Auth.api_key("01jryrcctd8c8vxbj4bs2ywrgs"), # 필요 없으면 제거
# additional_headers={
# "X-OpenAI-Api-Key": "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" # 필요할 경우
# }
# )
OPENAI_API_KEY="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"
client = weaviate.connect_to_custom(
http_host="183.111.96.67",
http_port=32668,
grpc_host="183.111.96.67",
http_secure=False,
grpc_port=32619,
grpc_secure=False,
auth_credentials=AuthApiKey("01js3q6y7twaxccm5dbh3se9bt"), # 인증이 필요 없으면 생략 가능
headers={"X-OpenAI-Api-Key": OPENAI_API_KEY} # 필요시
)
if client.is_ready():
print("Weaviate 연결 성공!")
else:
print("연결 실패. 서버 상태를 확인하세요.")
# 2. 벡터스토어
vectorstore = Weaviate(
client=client,
index_name="LangDocs",
text_key="text",
embedding=OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
)
# 3. HuggingFace LLM (예: mistralai/Mistral-7B-Instruct-v0.2)
llm = ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)
retriever = vectorstore.as_retriever()
# 4. RetrievalQA chain 구성
return RetrievalQA.from_chain_type(llm=llm, retriever=retriever)