dataset from workflow
This commit is contained in:
commit
3387a03f42
55
.gitattributes
vendored
Normal file
55
.gitattributes
vendored
Normal file
@ -0,0 +1,55 @@
|
||||
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
||||
*.model filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
*.npy filter=lfs diff=lfs merge=lfs -text
|
||||
*.npz filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pickle filter=lfs diff=lfs merge=lfs -text
|
||||
*.pkl filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
||||
# Audio files - uncompressed
|
||||
*.pcm filter=lfs diff=lfs merge=lfs -text
|
||||
*.sam filter=lfs diff=lfs merge=lfs -text
|
||||
*.raw filter=lfs diff=lfs merge=lfs -text
|
||||
# Audio files - compressed
|
||||
*.aac filter=lfs diff=lfs merge=lfs -text
|
||||
*.flac filter=lfs diff=lfs merge=lfs -text
|
||||
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ogg filter=lfs diff=lfs merge=lfs -text
|
||||
*.wav filter=lfs diff=lfs merge=lfs -text
|
||||
# Image files - uncompressed
|
||||
*.bmp filter=lfs diff=lfs merge=lfs -text
|
||||
*.gif filter=lfs diff=lfs merge=lfs -text
|
||||
*.png filter=lfs diff=lfs merge=lfs -text
|
||||
*.tiff filter=lfs diff=lfs merge=lfs -text
|
||||
# Image files - compressed
|
||||
*.jpg filter=lfs diff=lfs merge=lfs -text
|
||||
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
||||
*.webp filter=lfs diff=lfs merge=lfs -text
|
||||
0
README.md
Normal file
0
README.md
Normal file
1
config.pbtxt
Normal file
1
config.pbtxt
Normal file
@ -0,0 +1 @@
|
||||
testing
|
||||
63
model.py
Normal file
63
model.py
Normal file
@ -0,0 +1,63 @@
|
||||
# model.py
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class ConvBlock(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, pool=True):
|
||||
super(ConvBlock, self).__init__()
|
||||
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, padding=1)
|
||||
self.bn = nn.BatchNorm2d(out_channels)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.pool = nn.MaxPool2d(2) if pool else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.bn(x)
|
||||
x = self.relu(x)
|
||||
x = self.pool(x)
|
||||
return x
|
||||
|
||||
class FeatureExtractor(nn.Module):
|
||||
def __init__(self):
|
||||
super(FeatureExtractor, self).__init__()
|
||||
self.layer1 = ConvBlock(3, 32)
|
||||
self.layer2 = ConvBlock(32, 64)
|
||||
self.layer3 = ConvBlock(64, 128)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
return x
|
||||
|
||||
class Classifier(nn.Module):
|
||||
def __init__(self, num_classes=10):
|
||||
super(Classifier, self).__init__()
|
||||
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = nn.Linear(128, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.global_pool(x)
|
||||
x = torch.flatten(x, 1)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
class VisionModel(nn.Module):
|
||||
def __init__(self, num_classes=10):
|
||||
super(VisionModel, self).__init__()
|
||||
self.backbone = FeatureExtractor()
|
||||
self.classifier = Classifier(num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.backbone(x)
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
if __name__ == "__main__":
|
||||
model = VisionModel()
|
||||
dummy_input = torch.randn(1, 3, 224, 224)
|
||||
output = model(dummy_input)
|
||||
print("Output shape:", output.shape)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user