diff --git a/README.md b/README.md index 8773346..763fe28 100644 --- a/README.md +++ b/README.md @@ -27,8 +27,9 @@ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen ## News: -- 2/6/2024: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR). -- 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb) +- 2024/3/2: Release unified fine-tuning [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune) and [data](https://huggingface.co/datasets/Shitao/bge-m3-data) +- 2024/2/6: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR). +- 2024/2/1: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb) ## Specs @@ -46,9 +47,11 @@ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen - Data -| Dataset | Introduction | -|:----:|:---:| -| [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages| +| Dataset | Introduction | +|:----------------------------------------------------------:|:-------------------------------------------------:| +| [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages | +| [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) | Fine-tuning data used by bge-m3 | + ## FAQ @@ -88,7 +91,8 @@ In our experiments, we use [Pyserini](https://github.com/FlagOpen/FlagEmbedding/ You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to fine-tune the dense embedding. -Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released. +If you want to fine-tune all embedding function of m3, you can refer to the [unified_fine-tuning example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune) + @@ -258,7 +262,6 @@ If you have no enough resource to fine-tuning model with long text, the method i Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details. -**The fine-tuning codes and datasets will be open-sourced in the near future.** ## Acknowledgement