diff --git a/README.md b/README.md index be9e87c..1f51169 100644 --- a/README.md +++ b/README.md @@ -83,7 +83,10 @@ pip install -U FlagEmbedding ```python from FlagEmbedding import BGEM3FlagModel -model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation +model = BGEM3FlagModel('BAAI/bge-m3', + batch_size=12, # + max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process. + use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation sentences_1 = ["What is BGE M3?", "Defination of BM25"] sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", @@ -183,8 +186,10 @@ print(model.compute_score(sentence_pairs)) ![avatar](./imgs/mkqa.jpg) - Long Document Retrieval - -![avatar](./imgs/long.jpg) + - MLDR: + ![avatar](./imgs/long.jpg) + - NarritiveQA: + ![avatar](./imgs/nqa.jpg) ## Training