Update README.md
This commit is contained in:
parent
694b61558a
commit
3c06a359c0
202
README.md
202
README.md
@ -6,3 +6,205 @@ tags:
|
||||
- sentence-similarity
|
||||
|
||||
---
|
||||
|
||||
|
||||
# BGE-M3
|
||||
In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.
|
||||
- Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
|
||||
- Multi-Linguality: It can support more than 100 working languages.
|
||||
- Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
|
||||
|
||||
**Some suggestions for retrieval pipeline in RAG:**
|
||||
We recommend to use following pipeline: hybrid retrieval + re-ranking.
|
||||
- Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities.
|
||||
A classic example: using both embedding retrieval and the BM25 algorithm.
|
||||
Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval.
|
||||
This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
|
||||
- As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model.
|
||||
Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [cohere-reranker](https://txt.cohere.com/rerank/)) after retrieval can further filter the selected text.
|
||||
|
||||
|
||||
## FAQ
|
||||
|
||||
**1. Introduction for different retrieval methods**
|
||||
|
||||
- Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding)
|
||||
- Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720)
|
||||
- Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832).
|
||||
|
||||
**2. How to use BGE-M3 in other projects?**
|
||||
|
||||
For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE.
|
||||
The only difference is that the BGE-M3 model no longer requires adding instructions to the queries.
|
||||
For sparse retrieval methods, most open-source libraries currently do not support direct utilization of the BGE-M3 model.
|
||||
Contributions from the community are welcome.
|
||||
|
||||
|
||||
**3. How to fine-tune bge-M3 model?**
|
||||
|
||||
You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
|
||||
to fine-tune the dense embedding.
|
||||
|
||||
Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released.
|
||||
|
||||
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
Install:
|
||||
```
|
||||
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
||||
cd FlagEmbedding
|
||||
pip install -e .
|
||||
```
|
||||
or:
|
||||
```
|
||||
pip install -U FlagEmbedding
|
||||
```
|
||||
|
||||
|
||||
|
||||
### Generate Embedding for text
|
||||
|
||||
- Dense Embedding
|
||||
```python
|
||||
from FlagEmbedding import BGEM3FlagModel
|
||||
|
||||
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
||||
|
||||
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
||||
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
||||
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
||||
|
||||
embeddings_1 = model.encode(sentences_1)['dense_vecs']
|
||||
embeddings_2 = model.encode(sentences_2)['dense_vecs']
|
||||
similarity = embeddings_1 @ embeddings_2.T
|
||||
print(similarity)
|
||||
# [[0.6265, 0.3477], [0.3499, 0.678 ]]
|
||||
```
|
||||
You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
|
||||
Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details.
|
||||
|
||||
|
||||
- Sparse Embedding (Lexical Weight)
|
||||
```python
|
||||
from FlagEmbedding import BGEM3FlagModel
|
||||
|
||||
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
||||
|
||||
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
||||
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
||||
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
||||
|
||||
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
|
||||
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
|
||||
|
||||
# you can see the weight for each token:
|
||||
print(model.convert_id_to_token(output_1['lexical_weights']))
|
||||
# [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092},
|
||||
# {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]
|
||||
|
||||
|
||||
# compute the scores via lexical mathcing
|
||||
lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
|
||||
print(lexical_scores)
|
||||
# 0.19554901123046875
|
||||
|
||||
print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
|
||||
# 0.0
|
||||
```
|
||||
|
||||
- Multi-Vector (ColBERT)
|
||||
```python
|
||||
from FlagEmbedding import BGEM3FlagModel
|
||||
|
||||
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
|
||||
|
||||
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
||||
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
||||
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
||||
|
||||
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
|
||||
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
|
||||
|
||||
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
|
||||
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
|
||||
# 0.7797
|
||||
# 0.4620
|
||||
```
|
||||
|
||||
|
||||
### Compute score for text pairs
|
||||
Input a list of text pairs, you can get the scores computed by different methods.
|
||||
```python
|
||||
from FlagEmbedding import BGEM3FlagModel
|
||||
|
||||
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
|
||||
|
||||
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
||||
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
||||
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
||||
|
||||
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
|
||||
print(model.compute_score(sentence_pairs))
|
||||
# {
|
||||
# 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
|
||||
# 'sparse': [0.05865478515625, 0.0026397705078125, 0.0, 0.0540771484375],
|
||||
# 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
|
||||
# 'sparse+dense': [0.5266395211219788, 0.2692706882953644, 0.2691181004047394, 0.563307523727417],
|
||||
# 'colbert+sparse+dense': [0.6366440653800964, 0.3531297743320465, 0.3487969636917114, 0.6618075370788574]
|
||||
# }
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
## Evaluation
|
||||
|
||||
- Multilingual (Miracl dataset)
|
||||
|
||||

|
||||
|
||||
- Cross-lingual (MKQA dataset)
|
||||
|
||||

|
||||
|
||||
- Long Document Retrieval
|
||||
|
||||

|
||||
|
||||
|
||||
## Training
|
||||
- Self-knowledge Distillation: combining multiple outputs from different
|
||||
retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
|
||||
- Efficient Batching: Improve the efficiency when fine-tuning on long text.
|
||||
The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
|
||||
- MCLS: A simple method to improve the performance on long text without fine-tuning.
|
||||
If you have no enough resource to fine-tuning model with long text, the method is useful.
|
||||
|
||||
Refer to our [report]() for more details.
|
||||
|
||||
**The fine-tuning codes and datasets will be open-sourced in the near future.**
|
||||
|
||||
## Models
|
||||
|
||||
We release two versions:
|
||||
- BAAI/bge-m3-unsupervised: the model after contrastive learning in a large-scale dataset
|
||||
- BAAI/bge-m3: the final model fine-tuned from BAAI/bge-m3-unsupervised
|
||||
|
||||
## Acknowledgement
|
||||
|
||||
Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
|
||||
|
||||
## Citation
|
||||
|
||||
If you find this repository useful, please consider giving a star :star: and citation
|
||||
|
||||
```
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user