Update README.md
This commit is contained in:
parent
b28ce2a6fc
commit
694b61558a
48
README.md
48
README.md
@ -6,51 +6,3 @@ tags:
|
||||
- sentence-similarity
|
||||
|
||||
---
|
||||
|
||||
# {MODEL_NAME}
|
||||
|
||||
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
||||
|
||||
<!--- Describe your model here -->
|
||||
|
||||
## Usage (Sentence-Transformers)
|
||||
|
||||
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
||||
|
||||
```
|
||||
pip install -U sentence-transformers
|
||||
```
|
||||
|
||||
Then you can use the model like this:
|
||||
|
||||
```python
|
||||
from sentence_transformers import SentenceTransformer
|
||||
sentences = ["This is an example sentence", "Each sentence is converted"]
|
||||
|
||||
model = SentenceTransformer('{MODEL_NAME}')
|
||||
embeddings = model.encode(sentences)
|
||||
print(embeddings)
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Evaluation Results
|
||||
|
||||
<!--- Describe how your model was evaluated -->
|
||||
|
||||
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
||||
|
||||
|
||||
|
||||
## Full Model Architecture
|
||||
```
|
||||
SentenceTransformer(
|
||||
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
||||
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
||||
(2): Normalize()
|
||||
)
|
||||
```
|
||||
|
||||
## Citing & Authors
|
||||
|
||||
<!--- Describe where people can find more information -->
|
||||
Loading…
Reference in New Issue
Block a user