Upload README.md with huggingface_hub
This commit is contained in:
parent
b4019bcd5c
commit
3f6000f2fe
@ -77,7 +77,8 @@ print(scores) # [0.00027803096387751553, 0.9948403768236574]
|
||||
|
||||
```python
|
||||
from FlagEmbedding import FlagLLMReranker
|
||||
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
|
||||
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
||||
# reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
|
||||
|
||||
score = reranker.compute_score(['query', 'passage'])
|
||||
print(score)
|
||||
@ -90,7 +91,8 @@ print(scores)
|
||||
|
||||
```python
|
||||
from FlagEmbedding import LayerWiseFlagLLMReranker
|
||||
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
|
||||
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
||||
# reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
|
||||
|
||||
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
|
||||
print(score)
|
||||
@ -230,7 +232,7 @@ def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
|
||||
return_tensors='pt',
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
||||
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
||||
model = model.to('cuda')
|
||||
model.eval()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user