Upload README.md with huggingface_hub

This commit is contained in:
Xiao 2024-03-19 06:27:36 +00:00 committed by system
parent b4019bcd5c
commit 3f6000f2fe
No known key found for this signature in database
GPG Key ID: 6A528E38E0733467

@ -77,7 +77,8 @@ print(scores) # [0.00027803096387751553, 0.9948403768236574]
```python ```python
from FlagEmbedding import FlagLLMReranker from FlagEmbedding import FlagLLMReranker
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage']) score = reranker.compute_score(['query', 'passage'])
print(score) print(score)
@ -90,7 +91,8 @@ print(scores)
```python ```python
from FlagEmbedding import LayerWiseFlagLLMReranker from FlagEmbedding import LayerWiseFlagLLMReranker
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score. score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
print(score) print(score)
@ -230,7 +232,7 @@ def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
return_tensors='pt', return_tensors='pt',
) )
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16) model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to('cuda') model = model.to('cuda')
model.eval() model.eval()