Upload README.md with huggingface_hub
This commit is contained in:
parent
5a642e0ba4
commit
b4019bcd5c
10
README.md
10
README.md
@ -30,8 +30,8 @@ And the score can be mapped to a float value in [0,1] by sigmoid function.
|
||||
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
|
||||
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
|
||||
| [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | [bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | - | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
|
||||
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [google/gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
|
||||
| [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [openbmb/MiniCPM-2B-dpo-fp16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16/tree/main) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
|
||||
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
|
||||
| [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
|
||||
|
||||
|
||||
You can select the model according your senario and resource.
|
||||
@ -267,7 +267,7 @@ You can fine-tune the reranker with the following code:
|
||||
torchrun --nproc_per_node {number of gpus} \
|
||||
-m FlagEmbedding.llm_reranker.finetune_for_instruction.run \
|
||||
--output_dir {path to save model} \
|
||||
--model_name_or_path BAAI/bge-reranker-v2-gemma \
|
||||
--model_name_or_path google/gemma-2b \
|
||||
--train_data ./toy_finetune_data.jsonl \
|
||||
--learning_rate 2e-4 \
|
||||
--num_train_epochs 1 \
|
||||
@ -298,7 +298,7 @@ torchrun --nproc_per_node {number of gpus} \
|
||||
torchrun --nproc_per_node {number of gpus} \
|
||||
-m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \
|
||||
--output_dir {path to save model} \
|
||||
--model_name_or_path BAAI/bge-reranker-v2-minicpm-layerwise \
|
||||
--model_name_or_path openbmb/MiniCPM-2B-dpo-bf16 \
|
||||
--train_data ./toy_finetune_data.jsonl \
|
||||
--learning_rate 2e-4 \
|
||||
--num_train_epochs 1 \
|
||||
@ -326,7 +326,7 @@ torchrun --nproc_per_node {number of gpus} \
|
||||
--head_type simple
|
||||
```
|
||||
|
||||
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-fp16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16/tree/main) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
|
||||
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
|
||||
|
||||
- [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data)
|
||||
- [quora train data](https://huggingface.co/datasets/quora)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user