Upload mnist.py
This commit is contained in:
parent
09d1690292
commit
e051106ace
150
mnist.py
Normal file
150
mnist.py
Normal file
@ -0,0 +1,150 @@
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
from tensorboardX import SummaryWriter
|
||||
from torchvision import datasets, transforms
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
|
||||
WORLD_SIZE = int(os.environ.get('WORLD_SIZE', 1))
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv1 = nn.Conv2d(1, 20, 5, 1)
|
||||
self.conv2 = nn.Conv2d(20, 50, 5, 1)
|
||||
self.fc1 = nn.Linear(4*4*50, 500)
|
||||
self.fc2 = nn.Linear(500, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x))
|
||||
x = F.max_pool2d(x, 2, 2)
|
||||
x = F.relu(self.conv2(x))
|
||||
x = F.max_pool2d(x, 2, 2)
|
||||
x = x.view(-1, 4*4*50)
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return F.log_softmax(x, dim=1)
|
||||
|
||||
def train(args, model, device, train_loader, optimizer, epoch, writer):
|
||||
model.train()
|
||||
for batch_idx, (data, target) in enumerate(train_loader):
|
||||
data, target = data.to(device), target.to(device)
|
||||
optimizer.zero_grad()
|
||||
output = model(data)
|
||||
loss = F.nll_loss(output, target)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if batch_idx % args.log_interval == 0:
|
||||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}'.format(
|
||||
epoch, batch_idx * len(data), len(train_loader.dataset),
|
||||
100. * batch_idx / len(train_loader), loss.item()))
|
||||
niter = epoch * len(train_loader) + batch_idx
|
||||
writer.add_scalar('loss', loss.item(), niter)
|
||||
|
||||
def test(args, model, device, test_loader, writer, epoch):
|
||||
model.eval()
|
||||
test_loss = 0
|
||||
correct = 0
|
||||
with torch.no_grad():
|
||||
for data, target in test_loader:
|
||||
data, target = data.to(device), target.to(device)
|
||||
output = model(data)
|
||||
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
|
||||
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
|
||||
correct += pred.eq(target.view_as(pred)).sum().item()
|
||||
|
||||
test_loss /= len(test_loader.dataset)
|
||||
print('\naccuracy={:.4f}\n'.format(float(correct) / len(test_loader.dataset)))
|
||||
writer.add_scalar('accuracy', float(correct) / len(test_loader.dataset), epoch)
|
||||
|
||||
|
||||
def should_distribute():
|
||||
return dist.is_available() and WORLD_SIZE > 1
|
||||
|
||||
|
||||
def is_distributed():
|
||||
return dist.is_available() and dist.is_initialized()
|
||||
|
||||
|
||||
def main():
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
|
||||
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
|
||||
help='input batch size for training (default: 64)')
|
||||
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
|
||||
help='input batch size for testing (default: 1000)')
|
||||
parser.add_argument('--epochs', type=int, default=1, metavar='N',
|
||||
help='number of epochs to train (default: 10)')
|
||||
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
||||
help='learning rate (default: 0.01)')
|
||||
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
|
||||
help='SGD momentum (default: 0.5)')
|
||||
parser.add_argument('--no-cuda', action='store_true', default=False,
|
||||
help='disables CUDA training')
|
||||
parser.add_argument('--seed', type=int, default=1, metavar='S',
|
||||
help='random seed (default: 1)')
|
||||
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
|
||||
help='how many batches to wait before logging training status')
|
||||
parser.add_argument('--save-model', action='store_true', default=False,
|
||||
help='For Saving the current Model')
|
||||
parser.add_argument('--dir', default='logs', metavar='L',
|
||||
help='directory where summary logs are stored')
|
||||
if dist.is_available():
|
||||
parser.add_argument('--backend', type=str, help='Distributed backend',
|
||||
choices=[dist.Backend.GLOO, dist.Backend.NCCL, dist.Backend.MPI],
|
||||
default=dist.Backend.GLOO)
|
||||
args = parser.parse_args()
|
||||
use_cuda = not args.no_cuda and torch.cuda.is_available()
|
||||
if use_cuda:
|
||||
print('Using CUDA')
|
||||
|
||||
writer = SummaryWriter(args.dir)
|
||||
|
||||
torch.manual_seed(args.seed)
|
||||
|
||||
device = torch.device("cuda" if use_cuda else "cpu")
|
||||
|
||||
if should_distribute():
|
||||
print('Using distributed PyTorch with {} backend'.format(args.backend))
|
||||
dist.init_process_group(backend=args.backend)
|
||||
|
||||
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
datasets.FashionMNIST('../data', train=True, download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])),
|
||||
batch_size=args.batch_size, shuffle=True, **kwargs)
|
||||
test_loader = torch.utils.data.DataLoader(
|
||||
datasets.FashionMNIST('../data', train=False, transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])),
|
||||
batch_size=args.test_batch_size, shuffle=False, **kwargs)
|
||||
|
||||
model = Net().to(device)
|
||||
|
||||
if is_distributed():
|
||||
Distributor = nn.parallel.DistributedDataParallel if use_cuda \
|
||||
else nn.parallel.DistributedDataParallelCPU
|
||||
model = Distributor(model)
|
||||
|
||||
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
|
||||
|
||||
for epoch in range(1, args.epochs + 1):
|
||||
train(args, model, device, train_loader, optimizer, epoch, writer)
|
||||
test(args, model, device, test_loader, writer, epoch)
|
||||
|
||||
if (args.save_model):
|
||||
torch.save(model.state_dict(),"mnist_cnn.pt")
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Loading…
Reference in New Issue
Block a user