imdb/README.md
Albert Villanova e6281661ce Convert dataset to Parquet (#5)
- Convert dataset to Parquet (610bdae015434d0a02e81468da0abb51c2164bc8)
- Delete loading script (1087fc1e105aad8fa3a6730edb6619b43ec420b5)
- Delete legacy dataset_infos.json (2fa85f972ae01fb2956c9925f7c420be7214de12)
2024-01-04 12:09:45 +00:00

7.6 KiB

annotations_creators language_creators language license multilinguality size_categories source_datasets task_categories task_ids paperswithcode_id pretty_name dataset_info configs train-eval-index
expert-generated
expert-generated
en
other
monolingual
10K<n<100K
original
text-classification
sentiment-classification
imdb-movie-reviews IMDB
config_name features splits download_size dataset_size
plain_text
name dtype
text string
name dtype
label
class_label
names
0 1
neg pos
name num_bytes num_examples
train 33432823 25000
name num_bytes num_examples
test 32650685 25000
name num_bytes num_examples
unsupervised 67106794 50000
83446840 133190302
config_name data_files default
plain_text
split path
train plain_text/train-*
split path
test plain_text/test-*
split path
unsupervised plain_text/unsupervised-*
true
config task task_id splits col_mapping metrics
plain_text text-classification binary_classification
train_split eval_split
train test
text label
text target
type
accuracy
name
Accuracy
type name args
f1 F1 macro
average
macro
type name args
f1 F1 micro
average
micro
type name args
f1 F1 weighted
average
weighted
type name args
precision Precision macro
average
macro
type name args
precision Precision micro
average
micro
type name args
precision Precision weighted
average
weighted
type name args
recall Recall macro
average
macro
type name args
recall Recall micro
average
micro
type name args
recall Recall weighted
average
weighted

Dataset Card for "imdb"

Table of Contents

Dataset Description

Dataset Summary

Large Movie Review Dataset. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.

Supported Tasks and Leaderboards

More Information Needed

Languages

More Information Needed

Dataset Structure

Data Instances

plain_text

  • Size of downloaded dataset files: 84.13 MB
  • Size of the generated dataset: 133.23 MB
  • Total amount of disk used: 217.35 MB

An example of 'train' looks as follows.

{
    "label": 0,
    "text": "Goodbye world2\n"
}

Data Fields

The data fields are the same among all splits.

plain_text

  • text: a string feature.
  • label: a classification label, with possible values including neg (0), pos (1).

Data Splits

name train unsupervised test
plain_text 25000 50000 25000

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

@InProceedings{maas-EtAl:2011:ACL-HLT2011,
  author    = {Maas, Andrew L.  and  Daly, Raymond E.  and  Pham, Peter T.  and  Huang, Dan  and  Ng, Andrew Y.  and  Potts, Christopher},
  title     = {Learning Word Vectors for Sentiment Analysis},
  booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
  month     = {June},
  year      = {2011},
  address   = {Portland, Oregon, USA},
  publisher = {Association for Computational Linguistics},
  pages     = {142--150},
  url       = {http://www.aclweb.org/anthology/P11-1015}
}

Contributions

Thanks to @ghazi-f, @patrickvonplaten, @lhoestq, @thomwolf for adding this dataset.