Compare commits

..

10 Commits

Author SHA1 Message Date
Gustavo de Rosa
675aa382d8
fix(config): Removes auto_map since it is not used anymore. 2024-04-29 16:16:33 +00:00
Gustavo de Rosa
db561377f8
Delete modeling_phi.py 2024-04-23 14:19:05 +00:00
Gustavo de Rosa
de9f725f6a
Delete configuration_phi.py 2024-04-23 14:18:57 +00:00
Gustavo de Rosa
467adac814
Update README.md 2024-04-23 14:18:44 +00:00
Gustavo de Rosa
474b29ef61
Delete pytorch_model.bin 2024-04-17 13:35:56 +00:00
Gustavo de Rosa
fa2a356ff2
Adding safetensors variant of this model (#82)
- Adding `safetensors` variant of this model (7e19e91fd0b2aaa2ec50981d2459604b2af7ac89)


Co-authored-by: Safetensors convertbot <SFconvertbot@users.noreply.huggingface.co>
2024-04-17 13:35:13 +00:00
Gustavo de Rosa
bffd3b29c4
Update LICENSE 2024-02-06 12:36:39 +00:00
Gustavo de Rosa
349cf8b5e8
Update README.md 2024-01-24 13:34:13 +00:00
Gustavo de Rosa
83b9c52637
Update README.md 2024-01-22 12:25:40 +00:00
Gustavo de Rosa
675e8c1bae
Update config.json 2024-01-22 12:25:27 +00:00
7 changed files with 8 additions and 1583 deletions

@ -1,4 +1,4 @@
PhyAGI. Microsoft.
Copyright (c) Microsoft Corporation. Copyright (c) Microsoft Corporation.
MIT License MIT License

@ -1,5 +1,4 @@
--- ---
inference: false
license: mit license: mit
license_link: https://huggingface.co/microsoft/phi-1_5/resolve/main/LICENSE license_link: https://huggingface.co/microsoft/phi-1_5/resolve/main/LICENSE
language: language:
@ -21,13 +20,7 @@ Phi-1.5 can write poems, draft emails, create stories, summarize texts, write Py
## How to Use ## How to Use
Phi-1.5 has been integrated in the development version (4.37.0.dev) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following: Phi-1.5 has been integrated in the `transformers` version 4.37.0, please ensure that you are using a version equal or higher than it.
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.
The current `transformers` version can be verified with: `pip list | grep transformers`.
## Intended Uses ## Intended Uses
@ -94,8 +87,6 @@ where the model generates the text after the comments.
* Phi-1.5 has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details. * Phi-1.5 has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.
* If you are using `transformers<4.37.0`, always load the model with `trust_remote_code=True` to prevent side-effects.
## Sample Code ## Sample Code
```python ```python
@ -104,8 +95,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_default_device("cuda") torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", torch_dtype="auto", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5")
inputs = tokenizer('''def print_prime(n): inputs = tokenizer('''def print_prime(n):
""" """

@ -3,10 +3,6 @@
"architectures": [ "architectures": [
"PhiForCausalLM" "PhiForCausalLM"
], ],
"auto_map": {
"AutoConfig": "configuration_phi.PhiConfig",
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
},
"attention_dropout": 0.0, "attention_dropout": 0.0,
"bos_token_id": null, "bos_token_id": null,
"embd_pdrop": 0.0, "embd_pdrop": 0.0,
@ -28,7 +24,7 @@
"rope_theta": 10000.0, "rope_theta": 10000.0,
"tie_word_embeddings": false, "tie_word_embeddings": false,
"torch_dtype": "float16", "torch_dtype": "float16",
"transformers_version": "4.37.0.dev0", "transformers_version": "4.37.0",
"use_cache": true, "use_cache": true,
"vocab_size": 51200 "vocab_size": 51200
} }

@ -1,193 +0,0 @@
# coding=utf-8
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Phi model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json",
}
class PhiConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Phi
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 51200):
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PhiModel`].
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
is an experimental feature, subject to breaking API changes in future versions.
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
Percentage of the query and keys which will have rotary embedding.
qk_layernorm (`bool`, *optional*, defaults to `False`):
Whether or not to normalize the Queries and Keys after projecting the hidden states.
bos_token_id (`int`, *optional*, defaults to 1):
Denotes beginning of sequences token id.
eos_token_id (`int`, *optional*, defaults to 2):
Denotes end of sequences token id.
Example:
```python
>>> from transformers import PhiModel, PhiConfig
>>> # Initializing a Phi-1 style configuration
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
>>> # Initializing a model from the configuration
>>> model = PhiModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phi"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=51200,
hidden_size=2048,
intermediate_size=8192,
num_hidden_layers=24,
num_attention_heads=32,
num_key_value_heads=None,
resid_pdrop=0.0,
embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act="gelu_new",
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.5,
qk_layernorm=False,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.qk_layernorm = qk_layernorm
self._rope_scaling_validation()
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")

BIN
model.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

File diff suppressed because it is too large Load Diff

BIN
pytorch_model.bin (Stored with Git LFS)

Binary file not shown.