Ko-PIQA/README.md
2025-11-14 12:44:42 +09:00

76 lines
2.4 KiB
Markdown

# Ko-PIQA: Korean Physical Commonsense Reasoning Dataset
[![arXiv](https://img.shields.io/badge/arXiv-2509.11303-b31b1b.svg)](https://arxiv.org/abs/2509.11303)
## 📖 Dataset Overview
Ko-PIQA is a **Korean Physical Commonsense Reasoning** dataset designed to complement English-centric benchmarks like PIQA and to include culturally-grounded physical reasoning questions.
- **Total items:** 441
- **Culturally-grounded items:** 87 (19.7%)
(e.g., kimchi storage, hanbok care, ondol heating)
- **Format:** PIQA-style binary choice (`solution0` / `solution1`)
- **Goal:** Evaluate Korean LLM physical reasoning capabilities
---
## 📊 Data Fields
| Field | Type | Description |
|-------------|---------|-------------|
| `prompt` | string | The goal or question |
| `solution0` | string | Candidate answer A |
| `solution1` | string | Candidate answer B |
| `label` | int | Correct answer index (`0` or `1`) |
| `cultural` | int/null | `1` if culturally-grounded, otherwise `null` |
---
## 🔎 Source & Filtering Pipeline
- **Source:** 3.01M Korean Q&A pairs from Naver Knowledge iN (collected until May 2025)
- **Step 1:** Filtered PIQA-style questions using Qwen3-4B, Qwen3-32B, and HCX-14B
→ 11,553 candidates
- **Step 2:** Sampled 600 general and 158 cultural questions
- **Step 3:** Refined and generated distractors using GPT-4o
- **Step 4:** Two native Korean speakers validated and filtered questions → 471 items
- **Step 5:** Deduplicated using KoSentenceBERT (cosine similarity > 0.85) → **final 441 items**
---
## 💡 Example
```json
{
"prompt": "김치찌개를 끓일 때 묵은지의 신맛을 중화시키면서도 깊은 맛을 내려면?",
"solution0": "설탕을 한 스푼 넣고 물을 부은 후 중불에서 5분간 끓인다.",
"solution1": "설탕을 한 스푼 넣고 중불에서 5분간 먼저 볶은 후 물을 붓는다.",
"label": 1,
"cultural": 1
}
```
## 💻 Usage
```python
from datasets import load_dataset
ds = load_dataset("HAERAE-HUB/Ko-PIQA")
print(ds['train'][0])
```
## 📌 Citation
```
@misc{choi2025kopiqakoreanphysicalcommonsense,
title={Ko-PIQA: A Korean Physical Commonsense Reasoning Dataset with Cultural Context},
author={Dasol Choi and Jungwhan Kim and Guijin Son},
year={2025},
eprint={2509.11303},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.11303},
}
```