Update README.md
This commit is contained in:
parent
3ab7155aa9
commit
3641912a2b
13
README.md
13
README.md
@ -27,8 +27,9 @@ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen
|
|||||||
|
|
||||||
|
|
||||||
## News:
|
## News:
|
||||||
- 2/6/2024: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
|
- 2024/3/2: Release unified fine-tuning [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune) and [data](https://huggingface.co/datasets/Shitao/bge-m3-data)
|
||||||
- 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
|
- 2024/2/6: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
|
||||||
|
- 2024/2/1: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
|
||||||
|
|
||||||
|
|
||||||
## Specs
|
## Specs
|
||||||
@ -47,8 +48,10 @@ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen
|
|||||||
- Data
|
- Data
|
||||||
|
|
||||||
| Dataset | Introduction |
|
| Dataset | Introduction |
|
||||||
|:----:|:---:|
|
|:----------------------------------------------------------:|:-------------------------------------------------:|
|
||||||
| [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages |
|
| [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages |
|
||||||
|
| [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) | Fine-tuning data used by bge-m3 |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## FAQ
|
## FAQ
|
||||||
@ -88,7 +91,8 @@ In our experiments, we use [Pyserini](https://github.com/FlagOpen/FlagEmbedding/
|
|||||||
You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
|
You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
|
||||||
to fine-tune the dense embedding.
|
to fine-tune the dense embedding.
|
||||||
|
|
||||||
Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released.
|
If you want to fine-tune all embedding function of m3, you can refer to the [unified_fine-tuning example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -258,7 +262,6 @@ If you have no enough resource to fine-tuning model with long text, the method i
|
|||||||
|
|
||||||
Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
|
Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
|
||||||
|
|
||||||
**The fine-tuning codes and datasets will be open-sourced in the near future.**
|
|
||||||
|
|
||||||
|
|
||||||
## Acknowledgement
|
## Acknowledgement
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user