Compare commits

..

10 Commits

Author SHA1 Message Date
Xiao
953dc6f6f8
add text-embeddings-inference tag for easier endpoint deployment (#19)
- add text-embeddings-inference tag for easier endpoint deployment (79c481748842b7efa0a12db59915db91731f0b93)


Co-authored-by: Moritz Laurer <MoritzLaurer@users.noreply.huggingface.co>
2024-06-24 14:08:45 +00:00
Xiao
12e974610b
Upload README.md with huggingface_hub 2024-03-19 09:26:24 +00:00
Xiao
995ec6ee29
Upload config.json with huggingface_hub 2024-03-19 07:41:26 +00:00
Xiao
324cc40576
Upload folder using huggingface_hub 2024-03-19 06:29:22 +00:00
Xiao
3f6000f2fe
Upload README.md with huggingface_hub 2024-03-19 06:27:36 +00:00
Xiao
b4019bcd5c
Upload README.md with huggingface_hub 2024-03-18 09:09:47 +00:00
Xiao
5a642e0ba4
Upload folder using huggingface_hub 2024-03-18 07:39:02 +00:00
Xiao
e306d60933
Upload README.md with huggingface_hub 2024-03-18 06:36:49 +00:00
Xiao
20d65a70df
Upload README.md with huggingface_hub 2024-03-17 16:12:46 +00:00
Xiao
08f6d70f30
Upload folder using huggingface_hub 2024-03-17 14:10:59 +00:00
7 changed files with 33 additions and 15 deletions

@ -4,6 +4,7 @@ pipeline_tag: text-classification
tags:
- transformers
- sentence-transformers
- text-embeddings-inference
language:
- multilingual
---
@ -30,8 +31,8 @@ And the score can be mapped to a float value in [0,1] by sigmoid function.
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | [bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | - | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [google/gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
| [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [openbmb/MiniCPM-2B-dpo-fp16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16/tree/main) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
| [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
You can select the model according your senario and resource.
@ -77,26 +78,28 @@ print(scores) # [0.00027803096387751553, 0.9948403768236574]
```python
from FlagEmbedding import FlagLLMReranker
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score) # 2.15625
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores) # [-0.84765625, 10.625]
print(scores)
```
#### For LLM-based layerwise reranker
```python
from FlagEmbedding import LayerWiseFlagLLMReranker
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
print(score) # -7.03125
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
print(scores) # [-10.0, 1.8203125]
print(scores)
```
### Using Huggingface transformers
@ -230,7 +233,7 @@ def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
return_tensors='pt',
)
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to('cuda')
model.eval()
@ -245,6 +248,20 @@ with torch.no_grad():
## Fine-tune
### Data Format
Train data should be a json file, where each line is a dict like this:
```
{"query": str, "pos": List[str], "neg":List[str], "prompt": str}
```
`query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts, `prompt` indicates the relationship between query and texts. If you have no negative texts for a query, you can random sample some from the entire corpus as the negatives.
See [toy_finetune_data.jsonl](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker/toy_finetune_data.jsonl) for a toy data file.
### Train
You can fine-tune the reranker with the following code:
**For llm-based reranker**
@ -253,7 +270,7 @@ You can fine-tune the reranker with the following code:
torchrun --nproc_per_node {number of gpus} \
-m FlagEmbedding.llm_reranker.finetune_for_instruction.run \
--output_dir {path to save model} \
--model_name_or_path BAAI/bge-reranker-v2-gemma \
--model_name_or_path google/gemma-2b \
--train_data ./toy_finetune_data.jsonl \
--learning_rate 2e-4 \
--num_train_epochs 1 \
@ -284,7 +301,7 @@ torchrun --nproc_per_node {number of gpus} \
torchrun --nproc_per_node {number of gpus} \
-m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \
--output_dir {path to save model} \
--model_name_or_path BAAI/bge-reranker-v2-minicpm-layerwise \
--model_name_or_path openbmb/MiniCPM-2B-dpo-bf16 \
--train_data ./toy_finetune_data.jsonl \
--learning_rate 2e-4 \
--num_train_epochs 1 \
@ -309,10 +326,11 @@ torchrun --nproc_per_node {number of gpus} \
--target_modules q_proj k_proj v_proj o_proj \
--start_layer 8 \
--head_multi True \
--head_type simple
--head_type simple \
--lora_extra_parameters linear_head
```
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-fp16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16/tree/main) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
- [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data)
- [quora train data](https://huggingface.co/datasets/quora)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 134 KiB

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 99 KiB

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

After

Width:  |  Height:  |  Size: 51 KiB

@ -1,5 +1,5 @@
{
"_name_or_path": "/share/cf/pycharm/reranker-finetune/bge_rerank/finetune_for_m3/m3_reranker",
"_name_or_path": "BAAI/bge-m3",
"architectures": [
"XLMRobertaForSequenceClassification"
],
@ -31,4 +31,4 @@
"type_vocab_size": 1,
"use_cache": true,
"vocab_size": 250002
}
}